MATH 150 - WRITTEN HOMEWORK \# 3 - SOLUTIONS

(1) (8 points.) Let the domain $\mathbb{R}=(-\infty, \infty)$ consists of all real numbers. Determine the truth value of each of the following statements. If the statement is True, justify your answer. If the statement is False, give a counterexample.
(a) $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(0<x-y<3)$.

Solution: True. For any x, take $y=x-1$. Then $x-y=1$, which is strictly between 0 and 3.
(b) $(\forall x \in \mathbb{R})(\forall y \in \mathbb{R})\left(x^{2}=y^{2} \rightarrow x=y\right)$.

Solution: False. Counterexample: Take $x=1$ and $y=-1$. Then $x^{2}=y^{2}$ but $x \neq y$.
(c) $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(\exists z \in \mathbb{R})\left((y \neq z) \wedge\left(x^{2}=y^{2}\right) \wedge\left(x^{2}=z^{2}\right)\right)$.

Solution: False. Counterexample: Take $x=0$. Then $\forall y \forall z, 0=x^{2}=y^{2}$ and $0=x^{2}=z^{2}$ implies that $y=0=z$.
(d) $(\exists x \in \mathbb{R})(\forall y \in \mathbb{R})\left((x<y) \rightarrow\left(y^{2}>4\right)\right)$.

Solution: True. Take $x=2$. (One could pick x to be any real number greater than or equal to 2). Then for any $y \leq 2$, the hypothesis is false, thus the implication is vacuously true. On the other hand, for any $y>2$, we have $y^{2}>4$ and the implication is again true.

(2) (16 points.)

(a) Let a and b be positive real numbers. Prove that if $a \leq b$, then $\sqrt{a} \leq \sqrt{b}$.

Solution: Suppose $a \leq b$. Subtracting b from both sides gives $a-b \leq 0$, which can be written as $(\sqrt{a})^{2}-(\sqrt{b})^{2} \leq 0$. Factoring this as a difference of two squares, we have $(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b}) \leq 0$. Dividing both sides by the positive real number $\sqrt{a}+\sqrt{b}$ gives $\sqrt{a}-\sqrt{b}<0$. Adding \sqrt{b} to both sides yields $\sqrt{a} \leq \sqrt{b}$, as desired.
(b) Prove that if a and b are positive real numbers, then $2 \sqrt{a b} \leq a+b$.

Solution: Suppose a and b are positive real numbers. Observe that $0 \leq(a-b)^{2}$, that is, $0 \leq a^{2}-2 a b+b^{2}$. Adding $4 a b$ to both sides gives $4 a b \leq a^{2}+2 a b+b^{2}$. Factoring the expression on the right-hand side of the inequality yields $4 a b \leq(a+b)^{2}$. By part (a), such an inequality still holds after taking the square root of both sides; thus, we obtain $2 \sqrt{a b} \leq a+b$, as desired.
(3) (7 points.) Prove that there does not exist integers x and y such that $7 x^{2}+2 y^{4}=31$.

Solution: Observe that since the equation only depends on x^{2}, y^{4}, without loss of generality we can assume integers $x \geq 0, y \geq 0$. Assume for the sake of contradiction that (x, y) is a solution, then since $x^{2}, y^{4} \geq 0$, we must have $7 x^{2} \leq 31$ and $2 y^{4} \leq 31$. Thus, $x=0,1$, or 2 , while $y=0$, or 1 . Searching through these 6 possibilities, we see that there are no pairs (x, y) satisfying the equation, a contradiction.

Alternative Proof: If (x, y) is a solution, then since $2 y^{4}$ is even, $7 x^{2}=31-2 y^{4}$ is the difference of odd and even numbers and must be odd. If x were even, then so would x^{2} and hence, also $7 x^{2}$. Hence, x must be odd. Now as in the previous Proof, the only possible values of x are 0,1 or 2 , and thus, $x=1$. That would imply $7 \cdot 1^{2}+2 y^{4}=31$, or $y=(12)^{1 / 4} \notin \mathbb{Z}$. Contradiction.
(4) (9 points.) Prove that for any integer n, the following statements are equivalent:
(a) $n^{2}+1$ is odd.
(b) $1-n$ is odd.
(c) n^{3} is even.

Solution: We start by defining the following propositions:

- $p: n^{2}+1$ is odd,
- $q: 1-n$ is odd,
- $r: n^{3}$ is even.

We will show that (i) $q \leftrightarrow p$, and (ii) $q \leftrightarrow r$.
> Proof of (i): $q \leftrightarrow p$, i.e., $1-n$ is odd $\leftrightarrow n^{2}+1$ is odd. To establish this, we need to show two implications: $q \rightarrow p$, i.e., $1-n$ is odd implies $n^{2}+1$ is odd and $p \rightarrow q$, i.e., $n^{2}+1$ is odd implies $1-n$ is odd.
$>$ Proof of $q \rightarrow p$: Suppose $1-n$ is odd. Then there exists an integer k such that $1-n=2 k+1$. Thus, $n=-2 k$ and taking the square on both sides, we get $n^{2}=4 k^{2}$. So, $n^{2}+1=4 k^{2}+1=2\left(2 k^{2}\right)+1$. Since $2 k^{2}$ is an integer because k is an integer, we see that $n^{2}+1$ is odd.
$>$ Proof of $p \rightarrow q$: We prove this by showing a contrapositive, i.e., $\neg q \rightarrow \neg p$. Here,
$\star \neg q: 1-n$ is even,
$\star \neg p: n^{2}+1$ is even.
Suppose $1-n$ is even. Then there exists an integer k such that $1-n=2 k$. Thus, $n=1-2 k$ and taking the square on both sides, we get $n^{2}=(1-2 k)^{2}=4 k^{2}-4 k+1$. So, $n^{2}+1=4 k^{2}-4 k+2=2\left(2 k^{2}-2 k+1\right)$. Since $2 k^{2}-2 k+1$ is an integer because k is an integer, we see that $n^{2}+1$ is even.
> Proof of (ii): $q \leftrightarrow r$, i.e., $1-n$ is odd $\leftrightarrow n^{3}$ is even. To establish this, we need to show two implications: $q \rightarrow r$, i.e., $1-n$ is odd implies n^{3} is even and $r \rightarrow q$, i.e., n^{3} is even implies $1-n$ is odd.
$>$ Proof of $q \rightarrow r$: Suppose $1-n$ is odd. Then there exists an integer k such that $1-n=2 k+1$. Thus, $n=-2 k$ and taking the cube on both sides, we get $n^{3}=$ $8 k^{3}=2\left(4 k^{3}\right)$. Since $8 k^{3}$ is an integer because k is an integer, we see that n^{3} is even.
\Rightarrow Proof of $r \rightarrow q$: We prove this by showing a contrapositive, i.e., $\neg q \rightarrow \neg r$. Here, $\star \neg q: 1-n$ is even, $\star \neg r: n^{3}$ is odd.
Suppose $1-n$ is even. Then there exists an integer k such that $1-n=2 k$. Thus, $n=1-2 k$ and taking the cube on both sides, we get $n^{3}=(1-2 k)^{3}=-8 k^{3}+$ $12 k^{2}-6 k+1=2\left(-4 k^{3}+6 k^{2}-3 k\right)+1$. Since $-4 k^{3}+6 k^{2}-3 k$ is an integer because k is an integer, we see that n^{3} is odd.

