MATH 150 - WRITTEN HOMEWORK # 3 - SOLUTIONS

(1) (8 points.) Let the domain R = (—o00, c0) consists of all real numbers. Determine the truth
value of each of the following statements. If the statement is True, justify your answer. If the
statement is False, give a counterexample.

(@ (VzeR)(FyeR)(0<z—y<3).
Solution: True. For any z, take y = x — 1. Then x — y = 1, which is strictly between 0
and 3.

(b) (Vz € R)(Vy € R) (22 = 3> — x = y).
Solution: False. Counterexample: Take = 1 and y = —1. Then 2 = y? but = # .

() (¥z € R)(3y € R)(3z € R) ((y £ 2) A (4 = ) A (& = 2)).
Solution: False. Counterexample: Take z = 0. Then VyVz, 0 = 2* = y* and 0 = 2? = 2?
implies that y = 0 = z.

(d) Gz e R)(Vy € R) ((z <y) = (y* > 4)).
Solution: True. Take z = 2. (One could pick z to be any real number greater than or

equal to 2). Then for any y < 2, the hypothesis is false, thus the implication is vacuously
true. On the other hand, for any y > 2, we have y* > 4 and the implication is again true.

(2) (16 points.)
(a) Let a and b be positive real numbers. Prove that if a < b, then \/a < V.

Solution: Suppose a < b. Subtracting b from both sides gives a — b < 0, which can be
written as (y/a)?> — (v/b)? < 0. Factoring this as a difference of two squares, we have
(v/a—vb)(v/a++/b) < 0. Dividing both sides by the positive real number \/a -+ /b gives
va— /b < 0. Adding v/b to both sides yields v/a < v/b, as desired.

(b) Prove that if a and b are positive real numbers, then 2v/ab < a + b.

Solution: Suppose a and b are positive real numbers. Observe that 0 < (a — b)?, that
is, 0 < a? — 2ab + b?. Adding 4ab to both sides gives 4ab < a® + 2ab + b*. Factoring the
expression on the right-hand side of the inequality yields 4ab < (a + b)?. By part (a),
such an inequality still holds after taking the square root of both sides; thus, we obtain

2v/ab < a + b, as desired.

(3) (7 points.) Prove that there does not exist integers = and y such that 7z2* + 2y* = 31.

Solution: Observe that since the equation only depends on z?, y*, without loss of generality
we can assume integers > 0,y > 0. Assume for the sake of contradiction that (z,y) is a
solution, then since 22, y* > 0, we must have 722 < 31 and 2y* < 31. Thus, z = 0,1, or 2,
while y = 0, or 1. Searching through these 6 possibilities, we see that there are no pairs (z, y)
satisfying the equation, a contradiction.



Alternative Proof: If (z,y) is a solution, then since 2y* is even, 7z? = 31 — 2y is the
difference of odd and even numbers and must be odd. If z were even, then so would x>
and hence, also 72?. Hence,  must be odd. Now as in the previous Proof, the only possible
values of z are 0, 1 or 2, and thus, = 1. That would imply 7-12+2y* = 31, ory = (12)Y/* ¢ Z.
Contradiction.

(4) (9 points.) Prove that for any integer n, the following statements are equivalent:
(a) n? + 1is odd.
(b) 1 —nisodd.
(c) n?is even.

Solution: We start by defining the following propositions:
e p : n?+1isodd,
e g : 1—nisodd,
e r : n’iseven.

We will show that (i) ¢ <> p, and (ii) g <> 7.

» Proof of (i): ¢ <+ p,i.e., 1 —nisodd <+ n? + 1is odd. To establish this, we need to show
two implications: ¢ — p, i.e., 1 — nis odd implies n? + 1is odd and p — ¢, i.e., n* + 1is
odd implies 1 — n is odd.

> Proof of ¢ — p: Suppose 1 — n is odd. Then there exists an integer k such that
1 —n = 2k + 1. Thus, n = —2k and taking the square on both sides, we get
n? = 4k? So,n® + 1 = 4k* + 1 = 2(2k?) + 1. Since 2k? is an integer because k is an
integer, we see that n? + 1 is odd.

> Proof of p — ¢: We prove this by showing a contrapositive, i.e., =g — —p. Here,
* g : 1 —niseven,
* —p : n?+ 1liseven.
Suppose 1 — n is even. Then there exists an integer k£ such that 1 — n = 2k. Thus,
n = 1—2k and taking the square on both sides, we get n* = (1—2k)? = 4k*—4k+1.
So,n?+1 = 4k* — 4k + 2 = 2(2k* — 2k + 1). Since 2k* — 2k + 1 is an integer because
k is an integer, we see that n* + 1 is even.

» Proof of (ii): ¢ <+ r,i.e., 1 — nis odd < n? is even. To establish this, we need to show
two implications: ¢ — r, i.e.,, 1 — n is odd implies n?is even and r — ¢, i.e., n? is even
implies 1 — n is odd.

> Proof of ¢ — r: Suppose 1 — n is odd. Then there exists an integer k such that
1 —n = 2k + 1. Thus, n = —2k and taking the cube on both sides, we get nd =
8k3 = 2(4k?). Since 8k is an integer because k is an integer, we see that n® is even.

> Proof of r — ¢: We prove this by showing a contrapositive, i.e., ~¢ — —r. Here,
* g : 1 —niseven,
* —r : n?isodd.
Suppose 1 — n is even. Then there exists an integer k£ such that 1 — n = 2k. Thus,
n = 1 — 2k and taking the cube on both sides, we get n® = (1 — 2k)* = —8k* +
12k% — 6k + 1 = 2(—4k® + 6k* — 3k) + 1. Since —4k® + 6k* — 3k is an integer because
k is an integer, we see that n? is odd.



