
MATH 150 - WRITTEN HOMEWORK # 3 - SOLUTIONS

(1) (8 points.) Let the domain R = (−∞,∞) consists of all real numbers. Determine the truth
value of each of the following statements. If the statement is True, justify your answer. If the
statement is False, give a counterexample.

(a) (∀x ∈ R)(∃y ∈ R) (0 < x− y < 3).

Solution: True. For any x, take y = x − 1. Then x − y = 1, which is strictly between 0
and 3.

(b) (∀x ∈ R)(∀y ∈ R) (x2 = y2 → x = y).

Solution: False. Counterexample: Take x = 1 and y = −1. Then x2 = y2 but x 6= y.

(c) (∀x ∈ R)(∃y ∈ R)(∃z ∈ R) ((y 6= z) ∧ (x2 = y2) ∧ (x2 = z2)).

Solution: False. Counterexample: Take x = 0. Then ∀y ∀z, 0 = x2 = y2 and 0 = x2 = z2

implies that y = 0 = z.

(d) (∃x ∈ R)(∀y ∈ R) ((x < y)→ (y2 > 4)).

Solution: True. Take x = 2. (One could pick x to be any real number greater than or
equal to 2). Then for any y ≤ 2, the hypothesis is false, thus the implication is vacuously
true. On the other hand, for any y > 2, we have y2 > 4 and the implication is again true.

(2) (16 points.)

(a) Let a and b be positive real numbers. Prove that if a ≤ b, then
√
a ≤
√
b.

Solution: Suppose a ≤ b. Subtracting b from both sides gives a − b ≤ 0, which can be
written as (

√
a)2 − (

√
b)2 ≤ 0. Factoring this as a difference of two squares, we have

(
√
a−
√
b)(
√
a+
√
b) ≤ 0. Dividing both sides by the positive real number

√
a+
√
b gives√

a−
√
b < 0. Adding

√
b to both sides yields

√
a ≤
√
b, as desired.

(b) Prove that if a and b are positive real numbers, then 2
√
ab ≤ a+ b.

Solution: Suppose a and b are positive real numbers. Observe that 0 ≤ (a − b)2, that
is, 0 ≤ a2 − 2ab + b2. Adding 4ab to both sides gives 4ab ≤ a2 + 2ab + b2. Factoring the
expression on the right-hand side of the inequality yields 4ab ≤ (a + b)2. By part (a),
such an inequality still holds after taking the square root of both sides; thus, we obtain
2
√
ab ≤ a+ b, as desired.

(3) (7 points.) Prove that there does not exist integers x and y such that 7x2 + 2y4 = 31.

Solution: Observe that since the equation only depends on x2, y4, without loss of generality
we can assume integers x ≥ 0, y ≥ 0. Assume for the sake of contradiction that (x, y) is a
solution, then since x2, y4 ≥ 0, we must have 7x2 ≤ 31 and 2y4 ≤ 31. Thus, x = 0, 1, or 2,
while y = 0, or 1. Searching through these 6 possibilities, we see that there are no pairs (x, y)
satisfying the equation, a contradiction.
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Alternative Proof: If (x, y) is a solution, then since 2y4 is even, 7x2 = 31 − 2y4 is the
difference of odd and even numbers and must be odd. If x were even, then so would x2

and hence, also 7x2. Hence, x must be odd. Now as in the previous Proof, the only possible
values of x are 0, 1 or 2, and thus, x = 1. That would imply 7·12+2y4 = 31, or y = (12)1/4 /∈ Z.
Contradiction.

(4) (9 points.) Prove that for any integer n, the following statements are equivalent:

(a) n2 + 1 is odd.

(b) 1− n is odd.

(c) n3 is even.

Solution: We start by defining the following propositions:
• p : n2 + 1 is odd,
• q : 1− n is odd,
• r : n3 is even.

We will show that (i) q ↔ p, and (ii) q ↔ r.

ä Proof of (i): q ↔ p, i.e., 1− n is odd↔ n2 + 1 is odd. To establish this, we need to show
two implications: q → p, i.e., 1− n is odd implies n2 + 1 is odd and p→ q, i.e., n2 + 1 is
odd implies 1− n is odd.

ã Proof of q → p : Suppose 1 − n is odd. Then there exists an integer k such that
1 − n = 2k + 1. Thus, n = −2k and taking the square on both sides, we get
n2 = 4k2. So, n2 + 1 = 4k2 + 1 = 2(2k2) + 1. Since 2k2 is an integer because k is an
integer, we see that n2 + 1 is odd.

ã Proof of p→ q : We prove this by showing a contrapositive, i.e., ¬q → ¬p. Here,
H ¬q : 1− n is even,
H ¬p : n2 + 1 is even.

Suppose 1 − n is even. Then there exists an integer k such that 1 − n = 2k. Thus,
n = 1−2k and taking the square on both sides, we get n2 = (1−2k)2 = 4k2−4k+1.
So, n2+1 = 4k2− 4k+2 = 2(2k2− 2k+1). Since 2k2− 2k+1 is an integer because
k is an integer, we see that n2 + 1 is even.

ä Proof of (ii): q ↔ r, i.e., 1 − n is odd↔ n3 is even. To establish this, we need to show
two implications: q → r, i.e., 1 − n is odd implies n3 is even and r → q, i.e., n3 is even
implies 1− n is odd.

ã Proof of q → r : Suppose 1 − n is odd. Then there exists an integer k such that
1 − n = 2k + 1. Thus, n = −2k and taking the cube on both sides, we get n3 =
8k3 = 2(4k3). Since 8k3 is an integer because k is an integer, we see that n3 is even.

ã Proof of r → q : We prove this by showing a contrapositive, i.e., ¬q → ¬r. Here,
H ¬q : 1− n is even,
H ¬r : n3 is odd.

Suppose 1 − n is even. Then there exists an integer k such that 1 − n = 2k. Thus,
n = 1 − 2k and taking the cube on both sides, we get n3 = (1 − 2k)3 = −8k3 +
12k2− 6k+1 = 2(−4k3+6k2− 3k)+1. Since−4k3+6k2− 3k is an integer because
k is an integer, we see that n3 is odd.


