MATH 150 - WRITTEN HOMEWORK # 3 - SOLUTIONS

- (1) (8 *points.*) Let the domain $\mathbb{R} = (-\infty, \infty)$ consists of all real numbers. Determine the truth value of each of the following statements. If the statement is True, justify your answer. If the statement is False, give a counterexample.
 - (a) $(\forall x \in \mathbb{R}) (\exists y \in \mathbb{R}) (0 < x y < 3).$

Solution: True. For any *x*, take y = x - 1. Then x - y = 1, which is strictly between 0 and 3.

(b) $(\forall x \in \mathbb{R}) (\forall y \in \mathbb{R}) (x^2 = y^2 \to x = y).$

Solution: False. Counterexample: Take x = 1 and y = -1. Then $x^2 = y^2$ but $x \neq y$.

(c) $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(\exists z \in \mathbb{R}) ((y \neq z) \land (x^2 = y^2) \land (x^2 = z^2)).$

Solution: False. Counterexample: Take x = 0. Then $\forall y \forall z, 0 = x^2 = y^2$ and $0 = x^2 = z^2$ implies that y = 0 = z.

(d) $(\exists x \in \mathbb{R}) (\forall y \in \mathbb{R}) ((x < y) \rightarrow (y^2 > 4)).$

Solution: True. Take x = 2. (One could pick x to be any real number greater than or equal to 2). Then for any $y \le 2$, the hypothesis is false, thus the implication is vacuously true. On the other hand, for any y > 2, we have $y^2 > 4$ and the implication is again true.

- (2) (16 points.)
 - (a) Let *a* and *b* be positive real numbers. Prove that if $a \le b$, then $\sqrt{a} \le \sqrt{b}$.

Solution: Suppose $a \le b$. Subtracting *b* from both sides gives $a - b \le 0$, which can be written as $(\sqrt{a})^2 - (\sqrt{b})^2 \le 0$. Factoring this as a difference of two squares, we have $(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b}) \le 0$. Dividing both sides by the positive real number $\sqrt{a} + \sqrt{b}$ gives $\sqrt{a} - \sqrt{b} < 0$. Adding \sqrt{b} to both sides yields $\sqrt{a} \le \sqrt{b}$, as desired.

(b) Prove that if *a* and *b* are positive real numbers, then $2\sqrt{ab} \le a + b$.

Solution: Suppose *a* and *b* are positive real numbers. Observe that $0 \le (a - b)^2$, that is, $0 \le a^2 - 2ab + b^2$. Adding 4ab to both sides gives $4ab \le a^2 + 2ab + b^2$. Factoring the expression on the right-hand side of the inequality yields $4ab \le (a + b)^2$. By part (a), such an inequality still holds after taking the square root of both sides; thus, we obtain $2\sqrt{ab} \le a + b$, as desired.

(3) (7 *points.*) Prove that there does not exist integers x and y such that $7x^2 + 2y^4 = 31$.

Solution: Observe that since the equation only depends on x^2 , y^4 , without loss of generality we can assume integers $x \ge 0, y \ge 0$. Assume for the sake of contradiction that (x, y) is a solution, then since x^2 , $y^4 \ge 0$, we must have $7x^2 \le 31$ and $2y^4 \le 31$. Thus, x = 0, 1, or 2, while y = 0, or 1. Searching through these 6 possibilities, we see that there are no pairs (x, y) satisfying the equation, a contradiction.

Alternative Proof: If (x, y) is a solution, then since $2y^4$ is even, $7x^2 = 31 - 2y^4$ is the difference of odd and even numbers and must be odd. If x were even, then so would x^2 and hence, also $7x^2$. Hence, x must be odd. Now as in the previous Proof, the only possible values of x are 0, 1 or 2, and thus, x = 1. That would imply $7 \cdot 1^2 + 2y^4 = 31$, or $y = (12)^{1/4} \notin \mathbb{Z}$. Contradiction.

(4) (9 *points.*) Prove that for any integer *n*, the following statements are equivalent:

(a) $n^2 + 1$ is odd.

- (b) 1 n is odd.
- (c) n^3 is even.

Solution: We start by defining the following propositions:

- $p : n^2 + 1$ is odd,
- q : 1 n is odd,
- r : n^3 is even.

We will show that (i) $q \leftrightarrow p$, and (ii) $q \leftrightarrow r$.

- ▶ **Proof of (i):** $q \leftrightarrow p$, i.e., 1 n is odd $\leftrightarrow n^2 + 1$ is odd. To establish this, we need to show two implications: $q \rightarrow p$, i.e., 1 n is odd implies $n^2 + 1$ is odd and $p \rightarrow q$, i.e., $n^2 + 1$ is odd implies 1 n is odd.
 - ➤ Proof of $q \rightarrow p$: Suppose 1 n is odd. Then there exists an integer k such that 1 n = 2k + 1. Thus, n = -2k and taking the square on both sides, we get $n^2 = 4k^2$. So, $n^2 + 1 = 4k^2 + 1 = 2(2k^2) + 1$. Since $2k^2$ is an integer because k is an integer, we see that $n^2 + 1$ is odd.

> Proof of $p \rightarrow q$: We prove this by showing a contrapositive, i.e., $\neg q \rightarrow \neg p$. Here,

- ★ $\neg q$: 1 n is even,
- ★ ¬p : $n^2 + 1$ is even.

Suppose 1 - n is even. Then there exists an integer k such that 1 - n = 2k. Thus, n = 1 - 2k and taking the square on both sides, we get $n^2 = (1 - 2k)^2 = 4k^2 - 4k + 1$. So, $n^2 + 1 = 4k^2 - 4k + 2 = 2(2k^2 - 2k + 1)$. Since $2k^2 - 2k + 1$ is an integer because k is an integer, we see that $n^2 + 1$ is even.

- ▶ **Proof of (ii):** $q \leftrightarrow r$, i.e., 1 n is odd $\leftrightarrow n^3$ is even. To establish this, we need to show two implications: $q \rightarrow r$, i.e., 1 n is odd implies n^3 is even and $r \rightarrow q$, i.e., n^3 is even implies 1 n is odd.
 - ➤ Proof of $q \rightarrow r$: Suppose 1 n is odd. Then there exists an integer k such that 1 n = 2k + 1. Thus, n = -2k and taking the cube on both sides, we get $n^3 = 8k^3 = 2(4k^3)$. Since $8k^3$ is an integer because k is an integer, we see that n^3 is even.

▶ Proof of $r \rightarrow q$: We prove this by showing a contrapositive, i.e., $\neg q \rightarrow \neg r$. Here,

- ★ $\neg q$: 1 n is even,
- $\star \neg r : n^3 \text{ is odd.}$

Suppose 1 - n is even. Then there exists an integer k such that 1 - n = 2k. Thus, n = 1 - 2k and taking the cube on both sides, we get $n^3 = (1 - 2k)^3 = -8k^3 + 12k^2 - 6k + 1 = 2(-4k^3 + 6k^2 - 3k) + 1$. Since $-4k^3 + 6k^2 - 3k$ is an integer because k is an integer, we see that n^3 is odd.