Math 150: Discrete Mathematics

Exam 2-Solutions

Thursday, March 28, 2024

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Your University email
Indicate your instructor with a check in the appropriate box:

Dannenberg	MW 10:25-11:40am	
Kumar	TR 9:40-10:55am	

- You are responsible for checking that this exam has all 10 pages.
- No calculators, phones, electronic devices, books, notes are allowed during the exam.
- Show all work and justify all answers, unless specified otherwise.

Please COPY the HONOR PLEDGE and SIGN:

I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.

HONOR PLEDGE:
\qquad

1. (20 points)

(a) Consider the function $f: \mathbb{R}-\{0\} \rightarrow \mathbb{R}$ defined as

$$
f(x)=\frac{1}{4 x}+3 .
$$

(i) Is f injective (one-to-one)? Prove or show why not?
f is injective.
Suppose $x_{1}, x_{2} \in \mathbb{R}-\{0\}$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$. This means that

$$
\frac{1}{4 x_{1}}+3=\frac{1}{4 x_{2}}+3 \Longleftrightarrow \frac{1}{4 x_{1}}=\frac{1}{4 x_{2}} \Longleftrightarrow \frac{1}{x_{1}}=\frac{1}{x_{2}} \Longleftrightarrow x_{1}=x_{2}
$$

Therefore, f is injective.
(ii) Is f surjective (onto)? Prove or show why not?

The function f is not surjective because there exists an element $y=3 \in \mathbb{R}$ for which

$$
f(x)=\frac{1}{4 x}+3 \neq 3
$$

for every $x \in \mathbb{R}-\{0\}$.
(iii) Is f bijective? Justify your answer.

No, f is not bijective. To be bijective, it would need to be both injective and surjective, but by part (ii) it is not surjective.
(b) Consider the function $f: \mathbb{R}-\{0\} \rightarrow \mathbb{R}-\{3\}$ defined as

$$
f(x)=\frac{1}{4 x}+3
$$

Is f surjective (onto)? Prove or show why not?

To show that f is surjective, take an arbitrary $y \in \mathbb{R}-\{3\}$. We seek an $x \in \mathbb{R}-\{0\}$ for which $f(x)=y$, that is for which

$$
\frac{1}{4 x}+3=y
$$

Solving for x yields

$$
x=\frac{1}{4(y-3)},
$$

which is defined because $y \neq 3$. Thus, for any $y \in \mathbb{R}-\{3\}$, we have

$$
f\left(\frac{1}{4(y-3)}\right)=y
$$

Therefore, f is surjective.
2. (16 points)
(a) (8 points) Consider $f(n)=1^{11}+2^{11}+3^{11}+4^{11}+\ldots+n^{11}$. Let a be the least integer such that f is big - \mathcal{O} of n^{a}. What is a ? Prove that f is big - \mathcal{O} of n^{a}. State the values used for witnesses C and k.
Show your work clearly so that it can be understood how you arrived at your answer.
$a=12$.

For each $1 \leq j \leq n ; j^{11} \leq n^{11}$. So for all $n \geq 1$,

$$
\begin{aligned}
& 1^{11}+2^{11}+3^{11}+4^{11}+\ldots+n^{11} \\
\leq & n^{11}+n^{11}+n^{11}+\ldots+n^{11} \\
\leq & n \cdot n^{11} \\
= & n^{12} .
\end{aligned}
$$

Hence, $f(n)=1^{11}+2^{11}+3^{11}+4^{11}+\ldots+n^{11}$ is big $-\mathcal{O}$ of n^{12} with witnesses $C=1$ and $k=1$.
(b) (8 points)
(i) Define what it means for f to be big - Ω of g. Your definition must include the constants C and k.

We say that f is big - Ω of g if there are positive constants C and k such that

$$
|f(x)| \geq C|g(x)|
$$

whenever $x>k$.
(ii) Determine whether $f(x)=x \log x$ is big - Ω of x^{2}. If not, then give a brief explanation. If yes, provide the value used for witnesses C and k.
$f(x)=x \log x$ is NOT big $-\Omega$ of x^{2}.

If $x \log x$ is big - Ω of x^{2}, there exists positive constants C and k such that

$$
x \log x \geq C x^{2}, \quad \forall x>k \Longleftrightarrow \log x \geq C x, \quad \forall x>k
$$

which has NO solutions since $\log x$ grows more slowly that x. Hence, $f(x)=$ $x \log x$ is not big - Ω of x^{2}.
3. (12 points) Mark the following statements as True or False. If a statement is false, find a counterexample that shows why it is false. (If it is true, you do not need to explain why.) All the variables represent integers.
(a) If $x \equiv 4(\bmod 6)$ and $y \equiv 2(\bmod 6)$, then $x+y \equiv 0(\bmod 6)$.

This is TRUE since $x+y \equiv 4+2(\bmod 6) \equiv 6(\bmod 6) \equiv 0(\bmod 6)$
(b) If $x \equiv 5(\bmod 6)$ and $y \equiv-2(\bmod 6)$, then $x \cdot y \equiv 2(\bmod 6)$.

This is also TRUE since $-10 \equiv 2(\bmod 6)$.
(c) If $x \equiv 2(\bmod 6)$ and $y \equiv 2(\bmod 6)$, then $\frac{x}{y} \equiv 1(\bmod 6)$.

This is FALSE. Division only works if the numbers we are dividing are relatively prime to the modulus. In this case, we can take, for example, $x=8$ and $y=2$. Then $\frac{x}{y}=4$, and $4 \not \equiv 2(\bmod 6)$.
(d) $a \equiv b(\bmod m)$ if and only if $a \bmod m=b \bmod m$.

This is TRUE (theorem from Textbook in Section 4.1)
4. (16 points) Consider the binary number 101011001110. Find the hexadicmal expansion by:
(a) converting from binary to decimal and decimal to hexadecimal.

Binary to decimal:

$$
\begin{aligned}
(101011001110)_{2} & =2^{11}+2^{9}+2^{7}+2^{6}+2^{3}+2^{2}+2^{1} \\
& =2048+512+128+64+8+4+2 \\
& =2766
\end{aligned}
$$

Decimal to hexadecimal:

$$
\begin{aligned}
2766 & =16 \cdot 172+14 \longrightarrow a_{0}=14 \equiv E \\
172 & =16 \cdot 10+12 \longrightarrow a_{1}=12 \equiv C \\
10 & =16 \cdot 0+10 \longrightarrow a_{2}=10 \equiv A
\end{aligned}
$$

So

$$
(101011001110)_{2}=(2766)_{10}=(A C E)_{16}
$$

(b) converting directly from binary to hexadecimal.

Group into blocks of four (adding zeros to the left most block if necessary):

$$
\begin{aligned}
& (1010)_{2}=2^{3}+2^{1}=10=(A)_{16} \\
& (1100)_{2}=2^{3}+2^{2}=12=(C)_{16} \\
& (1110)_{2}=2^{3}+2^{2}+2^{1}=14=(E)_{16}
\end{aligned}
$$

Hence,

$$
(101011001110)_{2}=(A C E)_{16}
$$

5. (20 points) Use modular exponentiation to find $6^{90} \bmod 13$. Your answer should be an integer between 0 and 12, inclusive.

Write

$$
90=64+16+8+2=2^{6}+2^{4}+2^{3}+2^{1},
$$

and then compute

$$
\begin{aligned}
& 6^{2^{0}} \bmod 13=6 \bmod 13=6 \\
& 6^{2^{1}} \bmod 13=36 \bmod 13=10 \bmod 13=-\mathbf{3} \\
& 6^{2^{2}} \bmod 13=100 \bmod 13=9 \\
& 6^{2^{3}} \bmod 13=81 \bmod 13=\mathbf{3} \\
& 6^{2^{4}} \bmod 13=9 \bmod 13=-4 \\
& 6^{2^{5}} \bmod 13=81 \bmod 13=3 \\
& 6^{2^{6}} \bmod 13=9 \bmod 13=-4 .
\end{aligned}
$$

Multiplying the four terms in bold, we get

$$
\begin{aligned}
6^{90} \bmod 13 & =(-3)(3)(-4)(-4) \bmod 13 \\
& =(12)(-12) \bmod 13 \\
& =(12)(1) \bmod 13 \\
& =12 \bmod 13=12 .
\end{aligned}
$$

$$
=(12)(1) \bmod 13 \quad \text { since }-12=13 \cdot(-1)+1
$$

6. (16 points) Find Bezout coefficients for 32 and 246. Show your complete work clearly. Hint: Use the extended Euclidean algorithm.

We first use Euclidean algorithm to find the gcd(32, 246):

$$
\begin{aligned}
246 & =32 \cdot 7+22 \\
32 & =22 \cdot 1+10 \\
22 & =10 \cdot 2+2 \\
10 & =2 \cdot 5+0
\end{aligned}
$$

Thus, $\operatorname{gcd}(32,246)=2$. Using the above, we have

$$
22=246-32 \cdot 7, \quad 10=32-22 \cdot 1,
$$

and

$$
\begin{aligned}
2 & =22-10 \cdot 2 \\
& =22-(32-22 \cdot 1) \cdot 2 \\
& =22 \cdot 3-32 \cdot 2 \\
& =(246-32 \cdot 7) \cdot 3-32 \cdot 2 \\
& =246 \cdot 3-32 \cdot 23
\end{aligned}
$$

Hence, Bezout coefficients for 246 and 32 are 3 and -23 .

