Math 150: Discrete Mathematics

Exam 2-Solutions Thursday, March 28, 2024

Dannenberg	MW 10:25-11:40am	
Kumar	TR $9:40-10:55am$	

- You are responsible for checking that this exam has all 10 pages.
- No calculators, phones, electronic devices, books, notes are allowed during the exam.
- Show all work and justify all answers, unless specified otherwise.

Please **COPY** the HONOR PLEDGE and **SIGN**:

I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.

HONOR PLEDGE:

YOUR SIGNATURE:

1. (20 points)

(a) Consider the function $f : \mathbb{R} - \{0\} \to \mathbb{R}$ defined as

$$f(x) = \frac{1}{4x} + 3.$$

(i) Is f injective (one-to-one)? Prove or show why not?

f is injective.

Suppose $x_1, x_2 \in \mathbb{R} - \{0\}$ and $f(x_1) = f(x_2)$. This means that

$$\frac{1}{4x_1} + 3 = \frac{1}{4x_2} + 3 \iff \frac{1}{4x_1} = \frac{1}{4x_2} \iff \frac{1}{x_1} = \frac{1}{x_2} \iff x_1 = x_2$$

Therefore, f is injective.

(ii) Is f surjective (onto)? Prove or show why not?

The function f is not surjective because there exists an element $y = 3 \in \mathbb{R}$ for which

$$f(x) = \frac{1}{4x} + 3 \neq 3$$

for every $x \in \mathbb{R} - \{0\}$.

(iii) Is f bijective? Justify your answer.

No, f is not bijective. To be bijective, it would need to be both injective and surjective, but by part (ii) it is not surjective.

(b) Consider the function $f : \mathbb{R} - \{0\} \to \mathbb{R} - \{3\}$ defined as

$$f(x) = \frac{1}{4x} + 3.$$

Is f surjective (onto)? Prove or show why not?

To show that f is surjective, take an arbitrary $y \in \mathbb{R} - \{3\}$. We seek an $x \in \mathbb{R} - \{0\}$ for which f(x) = y, that is for which

$$\frac{1}{4x} + 3 = y.$$

Solving for x yields

$$x = \frac{1}{4(y-3)},$$

which is defined because $y \neq 3$. Thus, for any $y \in \mathbb{R} - \{3\}$, we have

$$f\left(\frac{1}{4(y-3)}\right) = y.$$

Therefore, f is surjective.

2. (16 points)

(a) (8 points) Consider $f(n) = 1^{11} + 2^{11} + 3^{11} + 4^{11} + \ldots + n^{11}$. Let *a* be the least integer such that *f* is big - \mathcal{O} of n^a . What is *a*? Prove that *f* is big - \mathcal{O} of n^a . State the values used for witnesses *C* and *k*.

Show your work clearly so that it can be understood how you arrived at your answer.

a = 12.

For each $1 \le j \le n$; $j^{11} \le n^{11}$. So for all $n \ge 1$,

$$1^{11} + 2^{11} + 3^{11} + 4^{11} + \ldots + n^{11}$$

$$\leq n^{11} + n^{11} + n^{11} + \ldots + n^{11}$$

$$\leq n \cdot n^{11}$$

$$= n^{12}.$$

Hence, $f(n) = 1^{11} + 2^{11} + 3^{11} + 4^{11} + \ldots + n^{11}$ is big - \mathcal{O} of n^{12} with witnesses C = 1and k = 1. (i) Define what it means for f to be big - Ω of g. Your definition must include the constants C and k.

We say that f is big - Ω of g if there are positive constants C and k such that

$$|f(x)| \ge C|g(x)|$$

whenever x > k.

(ii) Determine whether $f(x) = x \log x$ is big - Ω of x^2 . If not, then give a brief explanation. If yes, provide the value used for witnesses C and k.

 $f(x) = x \log x$ is NOT big - Ω of x^2 .

If $x \log x$ is big - Ω of x^2 , there exists positive constants C and k such that

 $x \log x \ge Cx^2, \quad \forall x > k \iff \log x \ge Cx, \quad \forall x > k,$

which has NO solutions since $\log x$ grows more slowly that x. Hence, $f(x) = x \log x$ is not big - Ω of x^2 .

3. (12 points) Mark the following statements as True or False. If a statement is false, find a counterexample that shows why it is false. (If it is true, you do not need to explain why.) All the variables represent integers.

(a) If $x \equiv 4 \pmod{6}$ and $y \equiv 2 \pmod{6}$, then $x + y \equiv 0 \pmod{6}$.

This is TRUE since $x + y \equiv 4 + 2 \pmod{6} \equiv 6 \pmod{6} \equiv 0 \pmod{6}$

(b) If $x \equiv 5 \pmod{6}$ and $y \equiv -2 \pmod{6}$, then $x \cdot y \equiv 2 \pmod{6}$.

This is also TRUE since $-10 \equiv 2 \pmod{6}$.

(c) If $x \equiv 2 \pmod{6}$ and $y \equiv 2 \pmod{6}$, then $\frac{x}{y} \equiv 1 \pmod{6}$.

This is FALSE. Division only works if the numbers we are dividing are relatively prime to the modulus. In this case, we can take, for example, x = 8 and y = 2. Then $\frac{x}{y} = 4$, and $4 \not\equiv 2 \pmod{6}$.

(d) $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

This is TRUE (theorem from Textbook in Section 4.1)

4. (16 points) Consider the binary number 101011001110. Find the hexadicmal expansion by:

(a) converting from binary to decimal and decimal to hexadecimal.

Binary to decimal:

$$(101011001110)_2 = 2^{11} + 2^9 + 2^7 + 2^6 + 2^3 + 2^2 + 2^1$$

= 2048 + 512 + 128 + 64 + 8 + 4 + 2
= 2766.

Decimal to hexadecimal:

$$2766 = 16 \cdot 172 + 14 \longrightarrow a_0 = 14 \equiv E$$
$$172 = 16 \cdot 10 + 12 \longrightarrow a_1 = 12 \equiv C$$
$$10 = 16 \cdot 0 + 10 \longrightarrow a_2 = 10 \equiv A.$$

 So

$$(101011001110)_2 = (2766)_{10} = (ACE)_{16}.$$

(b) converting directly from binary to hexadecimal.

Group into blocks of four (adding zeros to the left most block if necessary):

$$(1010)_2 = 2^3 + 2^1 = 10 = (A)_{16}$$

 $(1100)_2 = 2^3 + 2^2 = 12 = (C)_{16}$
 $(1110)_2 = 2^3 + 2^2 + 2^1 = 14 = (E)_{16}.$

Hence,

$$(101011001110)_2 = (ACE)_{16}.$$

5. (20 points) Use modular exponentiation to find $6^{90} \mod 13$. Your answer should be an integer between 0 and 12, inclusive.

Write

$$90 = 64 + 16 + 8 + 2 = 2^6 + 2^4 + 2^3 + 2^1.$$

and then compute

$$6^{2^0} \mod 13 = 6 \mod 13 = 6$$

 $6^{2^1} \mod 13 = 36 \mod 13 = 10 \mod 13 = -3$
 $6^{2^2} \mod 13 = 100 \mod 13 = 9$
 $6^{2^3} \mod 13 = 81 \mod 13 = 3$
 $6^{2^4} \mod 13 = 9 \mod 13 = -4$
 $6^{2^5} \mod 13 = 81 \mod 13 = 3$
 $6^{2^6} \mod 13 = 9 \mod 13 = -4$.

Multiplying the four terms in bold, we get

$$6^{90} \mod 13 = (-3)(3)(-4)(-4) \mod 13$$

= (12)(-12) mod 13
= (12)(1) mod 13 since $-12 = 13$
= 12 mod 13 = 12.

 $\cdot (-1) + 1$

6. (16 points) Find Bezout coefficients for 32 and 246. Show your complete work clearly. Hint: Use the extended Euclidean algorithm.

We first use Euclidean algorithm to find the gcd(32, 246):

 $246 = 32 \cdot 7 + 22$ $32 = 22 \cdot 1 + 10$ $22 = 10 \cdot 2 + 2$ $10 = 2 \cdot 5 + 0$

Thus, gcd(32, 246) = 2. Using the above, we have

$$22 = 246 - 32 \cdot 7, \quad 10 = 32 - 22 \cdot 1,$$

and

$$2 = 22 - 10 \cdot 2$$

= 22 - (32 - 22 \cdot 1) \cdot 2
= 22 \cdot 3 - 32 \cdot 2
= (246 - 32 \cdot 7) \cdot 3 - 32 \cdot 2
= 246 \cdot 3 - 32 \cdot 23.

Hence, Bezout coefficients for 246 and 32 are 3 and -23.