Math 150: Discrete Mathematics

Midterm Exam 2 - Practice Exam B - Solutions

NAME (please print legibly): \qquad
Your University ID Number:
Your University email

Indicate your instructor with a check in the appropriate box:

Dannenberg	MW 10:25-11:40am	
Kumar	TR 9:40-10:55am	

- You are responsible for checking that this exam has all 12 pages.
- No calculators, phones, electronic devices, books, notes are allowed during the exam.
- Show all work and justify all answers, unless specified otherwise.

Please COPY the HONOR PLEDGE and SIGN:

I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.

HONOR PLEDGE:

YOUR SIGNATURE:

1. (16 points)

(a) Find the prime factorization for 630 .

$$
630=2(315)=(2)(5)(63)=(2)(5)(3)(21)=(2)(5)(3)(3)(7)=2^{1} 3^{2} 5^{1} 7^{1}
$$

(b) Find the binary and hexadecimal representation for the number with decimal representation 151.

$$
\begin{aligned}
151 & =(2)(75)+1 \rightarrow a_{0}=1 \\
75 & =(2)(37)+1 \rightarrow a_{1}=1 \\
37 & =(2)(18)+1 \rightarrow a_{2}=1 \\
18 & =(2)(9)+0 \rightarrow a_{3}=0 \\
9 & =(2)(4)+1 \rightarrow a_{4}=1 \\
4 & =(2)(2)+0 \rightarrow a_{5}=0 \\
2 & =(2)(1)+0 \rightarrow a_{6}=0 \\
1 & =(2)(0)+1 \rightarrow a_{7}=1
\end{aligned}
$$

So $151=(10010111)_{2}$. To change from binary to hexadecimal, group the binary digits in groups of 4 and convert to single hexadecimal digit. Thus,

$$
151=(10010111)_{2}=(97)_{16} .
$$

(c) Find $\operatorname{gcd}(5040,1000)$.

$$
\begin{array}{r}
5040=1000 \cdot 5+40 \\
1000=40 \cdot 25+0
\end{array}
$$

Hence, $\operatorname{gcd}(5040,1000)=40$.
(d)

$$
B(m, n)=\left\{\begin{array}{l}
m+n B(m+1, n-1) \text { if } n>1 \\
2 m \text { if } n=1
\end{array}\right.
$$

Find $B(3,3)$.

$$
B(3,3)=3+3 B(4,2)=3+3(4+2 B(5,1))=15+6(2 \cdot 5)=15+60=75
$$

2. (16 points) Give an example of a function $f: \mathbb{N} \rightarrow \mathbb{N}$ that is
(a) one-to-one but not onto.

$$
f(n)=2 n
$$

(b) onto but not one-to-one.

$$
f(n)=\lfloor n / 2\rfloor
$$

(c) both onto and one-to-one (but different from the identity function).

$$
f(n)= \begin{cases}n+1 & \text { if } \mathrm{n} \text { is even } \\ n-1 & \text { if } \mathrm{n} \text { is odd }\end{cases}
$$

(d) neither one-to-one nor onto.

$$
f(n)=0 .
$$

3. (15 points) Use the bubble sorting algorithm to order the following integers:

$$
11,5,3,7,10,1,4,9,2 .
$$

Clearly show the steps of this algorithm for each pass.

1st sweep: (guarantees that the largest element is in correct position)

11	5	5	5	5	5	5	5	5
5	11	3	3	3	3	3	3	3
3	3	11	7	7	7	7	7	7
7	7	7	11	10	10	10	10	10
$10 \longrightarrow$	$10 \longrightarrow$	$10 \longrightarrow$	$10 \longrightarrow$	$11 \longrightarrow$	$1 \longrightarrow$	$1 \longrightarrow$	1	$=$
1	1	1	1	1	11	4	4	4
4	4	4	4	4	4	11	9	9
9	9	9	9	9	9	9	11	2
2	2	2	2	2	2	2	2	11

2nd sweep: (guarantees that the two largest elements are in correct position)

5	3	3	3	3	3	3	3
3	5	5	5	5	5	5	5
7	7	7	7	7	7	7	7
10	10	10	10	1	1	1	1
$1 \longrightarrow$	1	1	$\mathbf{l} \longrightarrow$	$10 \longrightarrow$	$4 \longrightarrow$	4	$=$
4	4	4	4	4	10	9	9
9	9	9	9	9	9	10	2
2	2	2	2	2	2	2	$\mathbf{1 0}$
$\mathbf{1 1}$							

3rd sweep:

3	3	3	3	3	3	3	
5	5	5	5	5	5	5	
7	7	7	1	1	1	1	
1	1	1	7	4	4	4	
$4 \longrightarrow$	$4 \longrightarrow$	$4 \longrightarrow$	$4 \longrightarrow$	$7 \longrightarrow$	7	$=$	7
9	9	9	9	9	9	2	
2	2	2	2	2	2	$\mathbf{9}$	(guarantees that the
$\mathbf{1 0}$	three largest elements						
$\mathbf{1 1}$	are in correct position)						

4th sweep:						
 3 3 3 3 3 3 5 5 1 1 1 1 1 1 5 4 4 4 4 4 4 5 5 5 $7 \longrightarrow$ $7 \longrightarrow$ $7 \longrightarrow$ $7 \longrightarrow$ 7 2						
2	2	2	2	2	$\mathbf{7}$	(guarantees that
$\mathbf{9}$	$\mathbf{9}$	$\mathbf{9}$	$\mathbf{9}$	$\mathbf{9}$	$\mathbf{9}$	the four
$\mathbf{1 0}$	largest elements					
$\mathbf{1 1}$	are in correct position)					

5th sweep:

3	1	1	1	1	
1	3	3	3	3	
4	4	4	4	4	
5	5	5	5	2	
$2 \longrightarrow$	$2 \longrightarrow$	$2 \longrightarrow$	2	$\mathbf{5}$	(guarantees
$\mathbf{7}$	$\mathbf{7}$	$\mathbf{7}$	$\mathbf{7}$	$\mathbf{7}$	that the
$\mathbf{9}$	$\mathbf{9}$	$\mathbf{9}$	$\mathbf{9}$	$\mathbf{9}$	five largest
$\mathbf{1 0}$	elements are				
$\mathbf{1 1}$	in correct position)				

6th sweep:

1	1	1	1	
3	3	3	3	
4	4	4	2	
2	2	2	$\mathbf{4}$	(guarantees
$\mathbf{5} \longrightarrow$	$\mathbf{5} \longrightarrow$	$\mathbf{5}$	$\mathbf{5}$	that the
$\mathbf{7}$	$\mathbf{7}$	$\mathbf{7}$	$\mathbf{7}$	six largest
$\mathbf{9}$	$\mathbf{9}$	$\mathbf{9}$	$\mathbf{9}$	elements
$\mathbf{1 0}$	$\mathbf{1 0}$	$\mathbf{1 0}$	$\mathbf{1 0}$	are in
$\mathbf{1 1}$	$\mathbf{1 1}$	$\mathbf{1 1}$	$\mathbf{1 1}$	correct position

7th sweep:			
1	1	1	
3	3	2	
2	2	$\mathbf{3}$	(guarantess that
$\mathbf{4}$	$\mathbf{4}$	$\mathbf{4}$	the seven
$\mathbf{5} \longrightarrow$	$\mathbf{5}$	$=\mathbf{5}$	largest
$\mathbf{7}$	$\mathbf{7}$	$\mathbf{7}$	elements
$\mathbf{9}$	$\mathbf{9}$	$\mathbf{9}$	are in
$\mathbf{1 0}$	$\mathbf{1 0}$	$\mathbf{1 0}$	correct
$\mathbf{1 1}$	$\mathbf{1 1}$	$\mathbf{1 1}$	position)

In the 8th sweep, we have one comparison since there are two elements to compare, which are in correct order so nothing happens, thereby completing the bubble sort.
8th sweep:

1	1
2	2
3	3
4	4
5	$=$
7	
7	
9	7
10	
10	
11	11

4. (12 points)

(a) Consider

$$
f(x)=\frac{x^{3}+x^{2}+1}{x^{2}+1} .
$$

Let n be the least integer such that f is $\operatorname{big}-\mathcal{O}$ of x^{n}. What is n ? Prove that f is big - \mathcal{O} of x^{n} for the n you found. State the values used for C and k.
$n=1$. For $x \geq 1$,

$$
\frac{x^{3}+x^{2}+1}{x^{2}+1} \leq \frac{x^{3}+x^{2}}{x^{2}}=x+1 \leq 2 x
$$

Hence, f is big - \mathcal{O} of x with witnesses $C=2$ and $k=1$.
(b) Show that x^{3} is not big - \mathcal{O} of x^{2}.

Proceed by contradiction. Assume there exist C and k such that $x^{3} \leq C x^{2}$ for all $x>k$. Thus, if $x \neq 0$, we have $x \leq C$ for all $x>k$. However, this fails for large values of x such as $x=|C|+|k|+1$.

5. (12 points)

(a) What is $-97 \bmod 11$.

We have

$$
-97 \bmod 11=(-9 \cdot 11+2) \bmod 11=2
$$

(b) Is 193 a prime number? If yes, show that it is prime. If not, find the prime factorization of it.

Yes. Observe that $13<\sqrt{193}<14$. List the primes not exceeding $\sqrt{193}: 2,3,5,7,11,13$. Check each prime until you find a divisor: $193=96 \cdot 2+1,193=64 \cdot 3+1,193=38 \cdot 5+3$, $193=27 \cdot 7+4,193=17 \cdot 11+6,193=14 \cdot 13+11$. There are no prime divisors, so 193 is prime.

6. (15 points)

(a) Suppose that a, b and c are non-zero integers and that $(a c) \mid(b c)$. Then is it true that necessarily $a \mid b$? Either prove that the assertion is true, or else construct an explicit counterexample.

Yes, it is true. Let $a, b, c \in \mathbb{Z}$, all non-zero. Suppose $(a c) \mid(b c)$. Then there exists $k \in \mathbb{Z}$ such that $b c=a c k$. Since $c \neq 0$, we may divide by c to obtain $b=a k$. It follows that $a \mid b$.
(b) Suppose that a, b and c are non-zero integers and that $a \mid(b c)$ and that $a \nmid b$. Then is it true that necessarily $a \mid c$? Either prove that the assertion is true, or else construct an explicit counterexample.

No! Counterexample: $a=6, b=2, c=3$. We have $b c=6$ and so $a \mid(b c)$ but $a \nmid b$ (also $a \nmid c)$. Must have a to be relatively prime to b and c for the above to be true.

7. (14 points)

(a) Use the Euclidean Algorithm to find $\operatorname{gcd}(111,201)$, showing all of your steps.

$$
\begin{aligned}
201 & =111 \cdot 1+90 \\
111 & =90 \cdot 1+21 \\
90 & =21 \cdot 4+6 \\
21 & =6 \cdot 3+3 \\
6 & =3 \cdot 2+0
\end{aligned}
$$

Hence, $\operatorname{gcd}(111,201)=3$.
(b) The following is the Euclidean Algorithm applied to the integers 29 and 12:

$$
\begin{aligned}
(29) & =2(12)+5 \\
(12) & =2(5)+2 \\
(5) & =2(2)+1 \\
(2) & =2(1)+0
\end{aligned}
$$

Run the algorithm "backwards" to write $\operatorname{gcd}(12,29)$ as a linear combination of 12 and 29. Show your work.

Form the given Euclidean algorithm, we see that $\operatorname{gcd}(12,29)=1$. Thus,

$$
\begin{aligned}
1 & =1(5)-2(2) \\
& =1(5)-2(1(12)-2(5))=5(5)-2(12) \\
& =5(1(29)-2(12))-2(12) \\
& =5(29)-12(12) .
\end{aligned}
$$

