Math 150: Discrete Mathematics

Midterm Exam 2 - Practice Exam B
NAME (please print legibly): \qquad
Your University ID Number:
Your University email

Indicate your instructor with a check in the appropriate box:

Dannenberg	MW 10:25-11:40am	
Kumar	TR 9:40-10:55am	

- You are responsible for checking that this exam has all 10 pages.
- No calculators, phones, electronic devices, books, notes are allowed during the exam.
- Show all work and justify all answers, unless specified otherwise.

Please COPY the HONOR PLEDGE and SIGN:

I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.

HONOR PLEDGE:

YOUR SIGNATURE:

1. (16 points)

(a) Find the prime factorization for 630 .
(b) Find the binary and hexadecimal representation for the number with decimal representation 151.
(c) Find $\operatorname{gcd}(5040,1000)$.
(d)

$$
B(m, n)=\left\{\begin{array}{l}
m+n B(m+1, n-1) \text { if } n>1 \\
2 m \text { if } n=1
\end{array}\right.
$$

Find $B(3,3)$.
2. (16 points) Give an example of a function $f: \mathbb{N} \rightarrow \mathbb{N}$ that is
(a) one-to-one but not onto.
(b) onto but not one-to-one.
(c) both onto and one-to-one (but different from the identity function).
(d) neither one-to-one nor onto.
3. (15 points) Use the bubble sorting algorithm to order the following integers:

$$
11,5,3,7,10,1,4,9,2
$$

Clearly show the steps of this algorithm for each pass.

4. (12 points)

(a) Consider

$$
f(x)=\frac{x^{3}+x^{2}+1}{x^{2}+1}
$$

Let n be the least integer such that f is $\operatorname{big}-\mathcal{O}$ of x^{n}. What is n ? Prove that f is big - \mathcal{O} of x^{n} for the n you found. State the values used for C and k.
(b) Show that x^{3} is not big - \mathcal{O} of x^{2}.

5. (12 points)

(a) What is $-97 \bmod 11$.
(b) Is 193 a prime number? If yes, show that it is prime. If not, find the prime factorization of it.

6. (15 points)

(a) Suppose that a, b and c are non-zero integers and that $(a c) \mid(b c)$. Then is it true that necessarily $a \mid b$? Either prove that the assertion is true, or else construct an explicit counterexample.
(b) Suppose that a, b and c are non-zero integers and that $a \mid(b c)$ and that $a \nmid b$. Then is it true that necessarily $a \mid c$? Either prove that the assertion is true, or else construct an explicit counterexample.

7. (14 points)

(a) Use the Euclidean Algorithm to find $\operatorname{gcd}(111,201)$, showing all of your steps.
(b) The following is the Euclidean Algorithm applied to the integers 29 and 12:

$$
\begin{aligned}
(29) & =2(12)+5 \\
(12) & =2(5)+2 \\
(5) & =2(2)+1 \\
(2) & =2(1)+0
\end{aligned}
$$

Run the algorithm "backwards" to write $\operatorname{gcd}(12,29)$ as a linear combination of 12 and 29. Show your work.

