Math 150: Discrete Mathematics

Midterm Exam 2 - Practice Exam B

NAME (please print legibly):
Your University ID Number:
Your University email

Indicate your instructor with a check in the appropriate box:

Dannenberg	MW 10:25-11:40am	
Kumar	TR $9:40-10:55am$	

- You are responsible for checking that this exam has all 10 pages.
- No calculators, phones, electronic devices, books, notes are allowed during the exam.
- Show all work and justify all answers, unless specified otherwise.

Please **COPY** the HONOR PLEDGE and **SIGN**:

I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.

HONOR PLEDGE:

YOUR SIGNATURE:_____

1. (16 points)

(a) Find the prime factorization for 630.

(b) Find the binary and hexadecimal representation for the number with decimal representation 151. (c) Find gcd(5040, 1000).

(d)

$$B(m,n) = \begin{cases} m + nB(m+1, n-1) & \text{if } n > 1\\ 2m & \text{if } n = 1 \end{cases}$$

Find B(3, 3).

- **2.** (16 points) Give an example of a function $f : \mathbb{N} \to \mathbb{N}$ that is
 - (a) one-to-one but not onto.

(b) onto but not one-to-one.

(c) both onto and one-to-one (but different from the identity function).

(d) neither one-to-one nor onto.

3. (15 points) Use the bubble sorting algorithm to order the following integers:

11, 5, 3, 7, 10, 1, 4, 9, 2.

Clearly show the steps of this algorithm for each pass.

4. (12 points)

(a) Consider

$$f(x) = \frac{x^3 + x^2 + 1}{x^2 + 1}.$$

Let n be the least integer such that f is big - \mathcal{O} of x^n . What is n? Prove that f is big - \mathcal{O} of x^n for the n you found. State the values used for C and k.

(b) Show that x^3 is not big - \mathcal{O} of x^2 .

5. (12 points)

(a) What is $-97 \mod 11$.

(b) Is 193 a prime number? If yes, show that it is prime. If not, find the prime factorization of it.

6. (15 points)

(a) Suppose that a, b and c are non-zero integers and that (ac)|(bc). Then is it true that necessarily a|b? Either prove that the assertion is true, or else construct an explicit counterexample.

(b) Suppose that a, b and c are non-zero integers and that a|(bc) and that $a \nmid b$. Then is it true that necessarily a|c? Either prove that the assertion is true, or else construct an explicit counterexample.

7. (14 points)

(a) Use the Euclidean Algorithm to find gcd(111, 201), showing all of your steps.

(b) The following is the Euclidean Algorithm applied to the integers 29 and 12:

$$(29) = 2(12) + 5$$
$$(12) = 2(5) + 2$$
$$(5) = 2(2) + 1$$
$$(2) = 2(1) + 0$$

Run the algorithm "backwards" to write gcd(12, 29) as a linear combination of 12 and 29. Show your work.