Math 150: Discrete Mathematics

Midterm Exam 2 - Practice Exam A - Solutions

NAME (please print legibly): \qquad
Your University ID Number:
Your University email

Indicate your instructor with a check in the appropriate box:

Dannenberg	MW 10:25-11:40am	
Kumar	TR 9:40-10:55am	

- You are responsible for checking that this exam has all 9 pages.
- No calculators, phones, electronic devices, books, notes are allowed during the exam.
- Show all work and justify all answers, unless specified otherwise.

Please COPY the HONOR PLEDGE and SIGN:

I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.

HONOR PLEDGE:

YOUR SIGNATURE:

1. (20 points)

(a) Write 99 in base 2 .

$$
\begin{aligned}
99 & =2 \cdot 49+1 \rightarrow a_{0}=1 \\
49 & =2 \cdot 24+1 \rightarrow a_{1}=1 \\
24 & =2 \cdot 12+0 \rightarrow a_{2}=0 \\
12 & =2 \cdot 6+0 \rightarrow a_{3}=0 \\
6 & =2 \cdot 3+0 \rightarrow a_{4}=0 \\
3 & =2 \cdot 1+1 \rightarrow a_{5}=1 \\
1 & =2 \cdot 0+1 \rightarrow a_{6}=1
\end{aligned}
$$

So $99=(1100011)_{2}$.
(b) Write 7798 in hexadecimal.

$$
\begin{aligned}
7798 & =16 \cdot 487+6 \rightarrow a_{0}=6 \\
487 & =16 \cdot 30+7 \rightarrow a_{1}=7 \\
30 & =16 \cdot 1+14 \rightarrow a_{2}=14 \equiv E \\
1 & =16 \cdot 0+1 \rightarrow a_{4}=1
\end{aligned}
$$

So $7798=(1 E 76)_{16}$.
(c) Write 3 in base 7 .

$$
3=7 \cdot 0+3 \rightarrow a_{0}=3 . \quad \text { So } 3=(3)_{7}
$$

(d) Find $(2 A E 01)_{16}+(A A 1)_{16}$, giving your answer in base 16 .

$2 A E 01$
A A 1
$2 B 8 A 2$
$E=14$ and $A=10$. So $E+A=24$ in base 10 . Thus, $24 \cdot 16^{2}=(16+8) \cdot 16^{2}=$ $1 \cdot 16^{3}+8 \cdot 16^{2}$. Hence, sum $=8$ and carry $=1$. Now $A+1=11=B$
(e) Find $(222)_{3} \times(28)_{9}$, giving your answer in base 3 or base 9 .

$$
(223)_{3}=2 \cdot 3^{2}+2 \cdot 3+2=26 \text { and }(28)_{9}=2 \cdot 9+8=26 . \text { Thus, }
$$

$$
(222)_{3} \times(28)_{9}=26^{2}=(20+6)^{2}=400+240+36=676
$$

in base 10. Now

$$
\begin{aligned}
676 & =9 \cdot 75+1 \rightarrow a_{0}=1 \\
75 & =9 \cdot 8+3 \rightarrow a_{1}=3 \\
8 & =9 \cdot 0+8 \rightarrow a_{2}=8
\end{aligned}
$$

So $676=(831)_{9}$.
2. (15 points) Let $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(k)=k^{3}$ for all $k \in \mathbb{Z}$.
(a) Is f injective? Prove or show why not.
f is injective.
For $x \in \mathbb{R}$, let $g(x)=x^{3}$, so that f is the restriction of g from \mathbb{R} to \mathbb{Z}. Then $g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable with $g^{\prime}(x)>0$, for all $x \neq 0$, so g is strictly increasing and hence injective: if $x \neq y$, then WLOG can assume $x<y$ and then $x^{3}<y^{3}$, so that $x^{3} \neq y^{3}$. Hence $g: \mathbb{R} \rightarrow \mathbb{R}$ is injective, from which it follows that $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is injective.

Alternatively, factor $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$; since the second factor is >0 for all $x, y \neq 0$ (as can be seen by completing the square), $(\forall x, y \in \mathbb{R}) x \neq y \rightarrow x^{3} \neq y^{3}$.
(b) Is f surjective? Prove or show why not.

No, f is not surjective. For example, 2 is not in the range of f, since $2^{1 / 3}$ is not rational, much less an integer. Alternatively, $1^{3}=1,2^{3}=8$, and by the strictly increasing behavior of f, there is no integer n with $1<n^{3}<8$.
(c) Is f bijective? Prove or show why not.

No, f is not bijective. To be bijective, it would need to be both injective and surjective, but by part (b) it is not surjective.

3. (15 points)

(a) What is $43 \bmod 21$.

Since $43=21 \cdot 2+1$, we have that $43 \equiv 1(\bmod 21)$.
(b) Find $43^{230} \bmod 21$.

From part (a), we know that $43 \equiv 1(\bmod 21)$. Therefore,

$$
43^{230} \bmod 21 \equiv 1^{230} \bmod 21 \equiv 1(\bmod 21)=1
$$

(c) Show that if $\operatorname{gcd}(x, p)=1$, then there is an integer y such that $x y \equiv 1(\bmod p)$.

Using Bezout's Theorem since $\operatorname{gcd}(x, p)=1$, there exists integers s, t such that

$$
x s+p t=1,
$$

i.e., $p t=1-x s$. So $p \mid(1-x s)$, which yields that

$$
1-x s \equiv 0(\bmod p) \Longleftrightarrow 1 \equiv x s(\bmod p)
$$

So let $s=y$ and we have

$$
x y \equiv 1(\bmod p)
$$

as desired.

4. (20 points)

(a) Define what it means for f to be big - Θ of g. Your answer should feature four constants C_{1}, C_{2} and k_{1}, k_{2}.

We have that there exists C_{1}, k_{1} such that $|f(x)| \leq C_{1}|g(x)|$ for all $x \geq k_{1}$, and there exists C_{2}, k_{2} such that $|f(x)| \geq C_{2}|g(x)|$ for all $x \geq k_{2}$. If both of the above conditions hold, we say that f is big - Θ of g.
(b) Show that $x^{2}-6 x+7$ is big $-\Omega$ of x. State the values you use for C and k.

Note that for $x \geq 7$, we have $x^{2} \geq 7 x$. So $x^{2}-6 x+7 \geq 7 x-6 x+7=x+7 \geq x$. Hence, $x^{2}-6 x+7$ is big $-\Omega$ of x with witnesses $C=1$ and $k=7$.
(c) Show that $\log _{10}(x)$ is big $-\Theta$ of $\log _{2}(x)$.

First, observe that $\log _{10}(x)=\log _{10}(2) \times \log _{2}(x)$. Since $\log _{10}(x)$ and $\log _{2}(x)$ only differ by a (positive) constant, there are of the same order. Hence, $\log _{10}(x)$ is big - Θ of $\log _{2}(x)$.
(d) Show that $f(n)=n^{3}$ is not big - Ω of $g(n)=3 n^{3} \log n$.

Suppose that $f(n)=n^{3}$ is $\operatorname{big}-\Omega$ of $g(n)=3 n^{3} \log n$. Then there exists constants C, k such that $n^{3} \geq C n^{3} \log (n)$, for all $n>k$. Dividing by $n^{3}>0$, this is equivalent with $1 \geq C \log (n)$, for all $n>k$, which is equivalent with $\frac{1}{C} \geq \log (n)$, for all $n>k$. However, we know that $\log (n) \rightarrow \infty$ as $n \rightarrow \infty$, and thus is not bounded above by any constant. Contradiction.
5. (14 points) Prove that if a and b are positive integers such that $\operatorname{lcm}(a, b)=a b$, then a and b are relatively prime.

We know from a Theorem discussed in lectures that

$$
\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a b,
$$

thus

$$
\operatorname{gcd}(a, b)=\frac{a b}{\operatorname{lcm}(a, b)}
$$

Hence, if $\operatorname{lcm}(a, b)=a b$, then

$$
\operatorname{gcd}(a, b)=\frac{a b}{a b}=1,
$$

which is the definition of a and b being relatively prime.

6. (16 points)

(a) Find $\operatorname{gcd}(159,509)$ using the Euclidean Algorithm, showing all of your steps.

$$
\begin{aligned}
509 & =159 \cdot 3+32 \\
159 & =32 \cdot 4+31 \\
32 & =31 \cdot 1+1 \\
31 & =1 \cdot 31+0
\end{aligned}
$$

Hence, $\operatorname{gcd}(159,509)=1$.
(b) Write $\operatorname{gcd}(159,509)$ as a linear combination of 159 and 509 with integer coefficients. Show your work.

Using the above, we have

$$
\begin{aligned}
1 & =32-31 \\
& =32-(159-32 \cdot 4)=32 \cdot 5-159 \\
& =(509-159 \cdot 3) \cdot 5-159 \\
& =509 \cdot 5-159 \cdot 16
\end{aligned}
$$

