Math 150: Discrete Mathematics

Midterm Exam 2 - Practice Exam A
NAME (please print legibly): \qquad
Your University ID Number:
Your University email

Indicate your instructor with a check in the appropriate box:

Dannenberg	MW 10:25-11:40am	
Kumar	TR 9:40-10:55am	

- You are responsible for checking that this exam has all 9 pages.
- No calculators, phones, electronic devices, books, notes are allowed during the exam.
- Show all work and justify all answers, unless specified otherwise.

Please COPY the HONOR PLEDGE and SIGN:

I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.

HONOR PLEDGE:

YOUR SIGNATURE:

1. (20 points)

(a) Write 99 in base 2
(b) Write 7798 in hexadecimal.
(c) Write 3 in base 7 .
(d) Find $(2 A E 01)_{16}+(A A 1)_{16}$, giving your answer in base 16 .
(e) Find $(222)_{3} \times(28)_{9}$, giving your answer in base 3 or base 9 .
2. (15 points) Let $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(k)=k^{3}$ for all $k \in \mathbb{Z}$.
(a) Is f injective? Prove or show why not.
(b) Is f surjective? Prove or show why not.
(c) Is f bijective? Prove or show why not.

3. (15 points)

(a) What is $43 \bmod 21$.
(b) Find $43^{230} \bmod 21$.
(c) Show that if $\operatorname{gcd}(x, p)=1$, then there is an integer y such that $x y \equiv 1(\bmod p)$.

4. (20 points)

(a) Define what it means for f to be big - Θ of g. Your answer should feature four constants C_{1}, C_{2} and k_{1}, k_{2}.
(b) Show that $x^{2}-6 x+7$ is big $-\Omega$ of x. State the values you use for C and k
(c) Show that $\log _{10}(x)$ is big $-\Theta$ of $\log _{2}(x)$.
(d) Show that $f(n)=n^{3}$ is not big - Ω of $g(n)=3 n^{3} \log n$.
5. (14 points) Prove that if a and b are positive integers such that $\operatorname{lcm}(a, b)=a b$, then a and b are relatively prime.

6. (16 points)

(a) Find $\operatorname{gcd}(159,509)$ using the Euclidean Algorithm, showing all of your steps.
(b) Write $\operatorname{gcd}(159,509)$ as a linear combination of 159 and 509 with integer coefficients. Show your work.

