Math 150: Discrete Mathematics

Midterm Exam 1 Tuesday, February 20, 2024 -
 v3

NAME (please print legibly): Solutions Your University ID Number: Your University email Indicate your instructor with a check in the appropriate box:

Dannenberg	MW 10:25-11:40am	
Kumar	TR $9:40-10:55am$	

- You are responsible for checking that this exam has all 8 pages.
- No calculators, phones, electronic devices, books, notes are allowed during the exam.
- Show all work and justify all answers, unless specified otherwise.

Please **COPY** the HONOR PLEDGE and **SIGN**:

I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.

HONOR PLEDGE:

YOUR SIGNATURE:_____

1. (15 points) Let p, q, r be propositions. Use truth table to show that $(\neg p) \rightarrow (q \rightarrow r)$ is logically equivalent to $q \rightarrow (p \lor r)$. You must explain what about your table shows that the two statements are logically equivalent.

					(¬р)→(2→л)	PVK	2→(PVR)
T	T	T	F	T	T	T	Т
T	T	F	F	F	T	T	Т
Τ	F	T	F	T	T	T	au
Т	F	F	F	T	\mathcal{T}	T	T
F	Τ	T	T	T	T	T	T
F	T	F	T	F	F	F	F
F	F	Т	Т	T	T	Т	T
F	F	F	T	T	T	F	Т

Columns corresponding to $(\neg P) \rightarrow (2 \rightarrow \pi)$ and $2 \rightarrow (PVR)$

have same truth values, thus

logically equivalent.

2. (20 points) The domain for all the variables below is the set of integers, \mathbb{Z} . Determine the truth value of each of the following propositions. For this problem, you do not need to justify your answers.

(a)
$$(\forall m) (m^2 \ge 1)$$

FALSE; Take $m = 0$.

(b)
$$(\exists m)(\forall n) (n \cdot m = n + m)$$

(c)
$$(\forall m)(\exists n) ((n^2 > m) \land (n \le m))$$

(d) $(\exists m)(\exists n) [(n^m = 9) \to (n - 2m = 5)]$

3. (25 points)

(a) Prove that for all integers n, n is even if and only if $n^2 + 5$ is odd. Use only the definition of even and odd numbers in your proof.

Proof: Let
$$p: n$$
 is even
 $g: n^2+5$ is odd
We will show that $p \rightarrow g$ and $g \rightarrow p$
Proof of $p \rightarrow g:$
Suppose n is even. Then $n = 2k$; $k \in \mathbb{Z}$.
Thus, $n^2+5=(2k)^2+5=4k^2+4+1$
 $= 2(2k^2+2)+1$
an integer
Hence, n^2+5 is odd
Proof of $g \rightarrow p:$
We prove this by contrapositive, i.e.,
 $\neg p \rightarrow \neg g$. Here,
 $\neg p: n$ is odd
 $\neg g: n^2+5$ is even.
Suppose n is odd. Then $n = 2k+1; k \in \mathbb{Z}$
Thus, $n^2+5=(2k+1)^2+5=4k^2+4k+1+5$
 $= 4k^2+4k+6=2(2k^2+2k+3)$
an integer
Hence, n^2+5 is even

(b) Prove that $\sqrt{3}$ is irrational. Explain how your argument would fail if you tried to use it to prove $\sqrt{9}$ irrational.

Proof: For the sake of contradiction,
assume
$$\sqrt{3}$$
 is rational, i.e.,
 $\sqrt{3} = \frac{\pi}{4}$; $z \neq y$ are integers and
the fraction $\frac{\pi}{4}$ is in its lowest form.
Then $3y^2 = x^2$, This means that
 x^2 is a multiple of 3.
Claim: if x^2 is a multiple of 3.
Claim: if x^2 is a multiple of 3.
Proof of claim: by contrapositive.
Suppose x is NOT a multiple of 3.
Thus $x = 3n + r$; where $r = 1, 2, 8$
 $\pi = x^2 = (3n + r)^2$
 $= (9n^2 + 6nr + r^2) = 3(3n^2 + 2nr) + r^2$.
 $= 3m + r^2$; $m = 3n^2 + 2nr$
if $r = 1$, $r^2 = 1$ so $x^2 = 3m + 1$; [NOT a
 $r = 2$, $r^2 = 4 = 3 + 1$ so $x^2 = 3(m + 1) + 1$]
Hence x^2 is NOT a multiple of 3.
 $x = 3n + r^2 = 3m + 1$; $r = 3n^2 + 2nr$

no y² is a multiple of 3, and then by
previous claim y is a multiple of 3.
Mis contradicts the fact that
$$\frac{x}{y}$$
 was
in lowest form, since x, y both
have a common factor of 3.
Mence, 13 is irrectional

If we tried this argument with v9, to get $\sqrt{9} = \frac{x}{y}$, so $9y^2 = x^2$ The claim if 2' is a multiple of 9, Then & is a multiple of 9 is FALSE, for instance 3° is a multiple of 9, but 3 is NOT a multiple of 9. Without The Claim, the proof fails.

4. (15 points) Prove or disprove (i.e., give a counterexample to) the following identity for sets A, B, C:

$$(A \cap B) - C = (A - C) \cap (B - C)$$

Suppose $x \in (A \cap B) - C$. Then $x \in A \cap B$ and $x \notin C$. $x \in A \cap B$ means $x \in A$ and $x \in B$. But we know that $x \notin C$. So $x \in A - C$ and $x \in B - C$. Thus, $x \in (A - C) \cap (B - C)$. Since this holds for every $x \in (A \cap B) - C$, we have $(A \cap B) - C \subseteq (A - C) \cap (B - C)$.

Now suppose $x \in (A-C) \cap (B-C)$. Then $z \in A-C$ and $z \in B-C$. It follows that $z \in A$ and $z \in B$ and $z \notin C$. So $z \in A \cap B$ and $z \notin C$. Thus, $x \in (A \cap B) - C$. Since this holds for every $z \in (A-C) \cap (B-C)$, we have $(A-C) \cap (B-C) \subseteq (A \cap B) - C$.

5. (25 points)

- (a) (5pts) Determine whether each of the following statements is true or false.
 - (i) $\emptyset \in \emptyset$ False
 - (ii) $\emptyset \subseteq \emptyset$ True
 - (iii) Ø⊂Ø False
 - (iv) $\emptyset \in \{\emptyset\}$ True
 - (v) $\emptyset \subseteq \{\emptyset\}$ True
- (b) (5pts) Determine the cardinality of each of the following sets.
 - (i) $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$ 3
 - (ii) $\{1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5\}$ 5
 - (iii) $\{1, \emptyset, a, 2, z, \{1, 2\}, \mathbb{Z}, \{a, z\}, \{a, 1, 2, z\}\}$
 - (iv) $\{x \mid x \text{ is an odd integer and } 1 \le x < 22\}$ [1 = $\{1,3,5,7,9,11,13,15,17,19,21\}$ (v) $\mathcal{P}(\{1,2,3\})$ $2^3 = 8$.

(c) (5pts) Fill in the blank below using the logical definition.

The set A is a subset of set B if an only if

- (d) (10pts) Let $A = \{0, 1, 3, 5\}$, $B = \{0, 2, 3, 4, 6\}$, and the universal set is given by $U = \{0, 1, 2, 3, 4, 5, 6, 7\}$. Find
- (i) $A \cup B$ = $\{0, 1, 2, 3, 4, 5, 6\}$

(ii)
$$A \cap B$$

= $\{0, 3\}$

(iii) A - B= $\{1, 5\}$