Math 150: Discrete Mathematics

Midterm Exam 1

Tuesday, February 20, 2024-v3

NAME (please print legibly): \qquad Solutions
Your University ID Number: \qquad
Your University email \qquad
Indicate your instructor with a check in the appropriate box:

Dannenberg	MW 10:25-11:40am	
Kumar	TR 9:40-10:55am	

- You are responsible for checking that this exam has all 8 pages.
- No calculators, phones, electronic devices, books, notes are allowed during the exam.
- Show all work and justify all answers, unless specified otherwise.

Please COPY the HONOR PLEDGE and SIGN:

I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.

HONOR PLEDGE:
\qquad

1. (15 points) Let p, q, r be propositions. Use truth table to show that $(\neg p) \rightarrow(q \rightarrow r)$ is logically equivalent to $q \rightarrow(p \vee r)$. You must explain what about your table shows that the two statements are logically equivalent.

p	q	π	$\neg p$	$q \rightarrow \pi$	$(\neg p) \rightarrow(q \rightarrow r)$	$p \vee \pi$	$q \rightarrow(p \vee r)$
T	T	T	F	T	T	T	T
T	T	F	F	F	T	T	T
T	F	T	F	T	T	T	T
T	F	F	F	T	T	T	T
F	T						
F	T	F	T	F	F	F	F
F	F	T	T	T	T	T	T
F	F	F	T	T	T	F	T

Columns corresponding to $(\neg p) \rightarrow(q \rightarrow \pi)$ and $q \rightarrow(p \vee r)$ have same truth values, Thus logically equivalent.
2. (20 points) The domain for all the variables below is the set of integers, \mathbb{Z}. Determine the truth value of each of the following propositions. For this problem, you do not need to justify your answers.
(a) $(\forall m)\left(m^{2} \geq 1\right)$

FALSE; Take $m=0$.
(b) $(\exists m)(\forall n)(n \cdot m=n+m)$

FALSE; negation is $\forall m \exists n(n \cdot m \neq n+m)$
if $m=0$, take $n=1$
if $m \neq 0$, take $n=0$
(c) $(\forall m)(\exists n)\left(\left(n^{2}>m\right) \wedge(n \leq m)\right)$

TRUE; if $m \geqslant 0$, take $n=-(m+1)$ if $m<0$, take $n=m-1$
(d) $(\exists m)(\exists n)\left[\left(n^{m}=9\right) \rightarrow(n-2 m=5)\right]$

TRUE; for $n=m=1, n^{m}=9$ is F. so conditional is T. regardless of the truth value of $n-2 m=5$.
3. (25 points)
(a) Prove that for all integers n, n is even if and only if $n^{2}+5$ is odd. Use only the definition of even and odd numbers in your proof.

Proof: Let $p: n$ is even
$q: n^{2}+5$ is odd
We kill show that $p \rightarrow q$ and $q \rightarrow p$
Proof of $p \rightarrow q$:
Suppose n is even. Then $n=2 k ; k \in \mathbb{Z}$.
Thus, $n^{2}+5=(2 k)^{2}+5=4 k^{2}+4+1$

$$
=2(\underbrace{\left(2 k^{2}+2\right.})+1
$$

an integer
Hence, $n^{2}+5$ is odd. $b / c k \in \mathbb{Z}$

Proof of $q \rightarrow p$:
We prove this by contrapositive, lie.,
$\neg p \rightarrow \neg q$. Here,
Ip: n is odd
$\neg q: n^{2}+5$ is even.
Suppose n is odd. Then $n=2 k+1 ; k \in \mathbb{Z}$
That, $n^{2}+5=(2 k+1)^{2}+5=4 k^{2}+4 k+1+5$

$$
=4 k^{2}+4 k+6=\frac{2\left(2 k^{2}+2 k+3\right)}{\text { an ruteger }} \text { b/cktz}
$$

Hence, $n^{2}+5$ is even
(b) Prove that $\sqrt{3}$ is irrational. Explain how your argument would fail if you tried to use it to prove $\sqrt{9}$ irrational.

Proof: For the sake of contradiction, assume $\sqrt{3}$ is rational, ie., $\sqrt{3}=\frac{x}{y} ; x \geq y$ are integers and the fraction $\frac{x}{y}$ is in its lowest form.
Then $3 y^{2}=x^{2}$, otis means that x^{2} is a multiple of 3 .
claim: if x^{2} is a multiple of 3 , Then x is a multiple of 3 .
proof of claim: by contrapositive.
suppose x is NOT a multiple of 3 .
thess $x=3 n+r$; where $r=1,2,8$

$$
\begin{array}{rlrl}
\Rightarrow x^{2} & =(3 n+r)^{2} & n \in \mathbb{Z} \\
& =\left(9 n^{2}+6 n r+r^{2}\right) & =3\left(3 n^{2}+2 n r\right)+r^{2} . \\
& =3 n+r^{2} ; m=3 n^{2}+2 n r
\end{array}
$$

if $r=1, r^{2}=1$ so $x^{2}=3 m+1 ; \quad\{$ NOT a

$$
\left.r=2, r^{2}=4=3+1 \text { so } x^{2}=3(m+1)+1\right\} \begin{gathered}
\text { NOT a } \\
\text { multiple of } \\
3 \text {. }
\end{gathered}
$$

Hence x^{2} is NOT a multiple of 5 .
Thew, x is a multiple of 3 . So,
$x=3 n ; n \in \mathbb{Z}$, therefore

$$
3 y^{2}=x^{2}=9 n^{2} \Rightarrow y^{2}=3 n^{2}
$$

so y^{2} is a multiple of 3 , and then by previous claim y is a multiple of 3 . This contradicts the fact that $\frac{x}{y}$ mas in lowest form, since x, y both have a common factor of 3 .
Hence, $\sqrt{3}$ is irrational
If we tried this's argument with $\sqrt{9}$, to get

$$
\sqrt{9}=\frac{x}{y}, \text { so } 9 y^{2}=x^{2}
$$

The claim
if x^{2} is a multiple of 9 ,
then x is a multiple of 9 is
FALSE, for instance
3^{2} is a multiple of 9 , but 3 is NOT a multiple of 9 .
Without The Claim, the proof fails.
4. (15 points) Prove or disprove (i.e., give a counterexample to) the following identity for sets A, B, C :

$$
(A \cap B)-C=(A-C) \cap(B-C)
$$

one can drank the venn diagram to see that the identity is True.

Proof: using the double inclusion of sets. We will prove that

$$
(A \cap B)-C \subseteq(A-C) \cap(B-C)
$$

and

$$
(A-C) \cap(B-C) \subseteq(A \cap B)-C .
$$

Suppose $x \in(A \cap B)-C$. Then $x \in A \cap B$ and $x \notin C, x \in A \cap B$ means $x \in A$ and $x \in B$. Bret we know that $x \notin C$. So $x \in A-C$ and $x \in B-C$. Thus, $x \in(A-C) \cap(B-C)$. Since this holds for every $x \in(A \cap B)-C$, we have

$$
(A \cap B)-C \subseteq(A-C) \cap(B-C)
$$

Now suppose $x \in(A-C) \cap(B-C)$. Then $x \in A-C$ and $x \in B-C$. It follows that $x \in A$ and $x \in B$ and $x \notin C$. So $x \in A \cap B$ and $x \notin C$. Thus, $x \in(A \cap B)-C$. Since this holds for every $x \in(A-C) \cap(B-C)$, we have

$$
(A-C) \cap(B-C) \subseteq(A \cap B)-C .
$$

5. (25 points)

(a) (5pts) Determine whether each of the following statements is true or false.
(i) $\emptyset \in \emptyset \quad F a l>e$
(ii) $\emptyset \subseteq \emptyset$ Trove
(iii) $\emptyset \subset \emptyset \quad F a \ell \gtrdot e$
(iv) $\emptyset \in\{\emptyset\}$ True
(v) $\emptyset \subseteq\{\emptyset\}$ True
(b) (5pts) Determine the cardinality of each of the following sets.
(i) $\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\} \quad 3$
(ii) $\{1,2,2,3,3,3,4,4,4,4,5,5,5,5,5\} \quad 5$
(iii) $\{1, \emptyset, a, 2, z,\{1,2\}, \mathbb{Z},\{a, z\},\{a, 1,2, z\}\} \quad$ q
(iv) $\{x \mid x$ is an odd integer and $1 \leq x<22\} \quad 11$
$=\{1,3,5,7,9,11,13,15.17,19,21\}$
(v) $\mathcal{P}(\{1,2,3\}) \quad 2^{3}=8$.
(c) (5pts) Fill in the blank below using the logical definition.

The set A is a subset of set B if an only if

$$
(\forall x \in U)(x \in A \rightarrow x \in B)
$$

(d) (10pts) Let $A=\{0,1,3,5\}, B=\{0,2,3,4,6\}$, and the universal set is given by $U=\{0,1,2,3,4,5,6,7\}$. Find
(i) $A \cup B$

$$
=\{0,1,2,3,4,5,6\}
$$

(ii) $A \cap B$

$$
=\{0,3\}
$$

(iii) $A-B$

$$
=\{1,5\}
$$

(iv) $B-A$

$$
=\{2,4,6\}
$$

(v) $\overline{(\bar{A} \cup B)}$

$$
\begin{array}{cc}
=\{1,5\} \text { since } \bar{A}=\{2,4,6,7\}, \text { and } \\
& \bar{A} \cup B=\{0,2,3,4,6,7\}
\end{array}
$$

