MATH 150 - Fall 2023 Midterm Exam \#1 - Practice B

Instructions: Closed book, no notes. Give reasons for all of your answers (except for the individual entries in the truth table in $\# 1$), and give a full proof for $\# 4$.

1. Use a truth table to show that the following is a tautology:

$$
\neg(p \wedge \neg q \wedge(p \rightarrow q)) .
$$

2. Determine the truth value of each of the following propositions, if the universe (domain of discourse) is the set \mathbb{R} of all real numbers.
(a) $(\exists y \forall x)\left(x^{2}=y^{3}\right)$
(b) $(\forall x \exists y)\left(x^{2}=y^{3}\right)$
(c) $(\forall x \exists!y)\left(x^{2}=y^{3}\right)$
(d) $(\forall y \exists x \exists z)(x+y=z)$
(e) $(\exists x \forall y \exists z)(x+y=z)$
(f) $(\exists x \exists z \forall y)(x+y=z)$

(continued)

3. In the universe (domain of discourse) $U=\mathbb{Z}=$ the integers, let $A=$ $\{0\}, B=\{-1,+1\}, E=$ the even integers and $O=$ the odd integers. Find each of the following sets:
(a) \bar{E}
(b) $E-A$
(c) $O-A$
(d) $\overline{(A \cup B)}$
4. Prove the following:

Thm. Suppose that $a, b, c, m \in \mathbb{Z}$ are integers such that $a \mid b$ and $a \mid m$ but $a \nmid c$. Prove that the equation $m x+b=c$ has no solution x in the integers.

