Math 150: Discrete Mathematics

Midterm Exam 1- Practice Exam C
NAME (please print legibly): Solutions
Your University ID Number:
Your University email

Indicate your instructor with a check in the appropriate box:

Dannenberg	MW 10:25-11:40am	
Kumar	TR 9:40-10:55am	

- You are responsible for checking that this exam has all 8 pages.
- No calculators, phones, electronic devices, books, notes are allowed during the exam.
- Show all work and justify all answers, unless specified otherwise.

Please COPY the HONOR PLEDGE and SIGN:

I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.

HONOR PLEDGE:

1. (20 points) Prove or disprove (i.e., give a counterexample to) the following identity for sets A, B :

$$
(A \cup B)-A=B-(A \cap B)
$$

Solution: Proof using the double inclusion of sets. We will prove that

$$
(A \cup B)-A \subseteq B-(A \cap B)
$$

and

$$
B-(A \cap B) \subseteq(A \cup B)-A
$$

Suppose $x \in(A \cup B)-A$. Then $x \in A \cup B$ and $x \notin A . x \in A \cup B$ means $x \in A$ or $x \in B$. But we know that $x \notin A$ so we must have $x \in B$. On the other hand, $x \notin A$ implies that $x \notin A \cap B$. Since $x \in B$ and $x \notin A \cap B$, we have $x \in B-(A \cap B)$. Since this holds for every $x \in(A \cup B)-A$, we have $(A \cup B)-A \subseteq B-(A \cap B)$.

Now suppose $x \in B-(A \cap B)$. Then $x \in B$ and $x \notin A \cap B$. Thus, it follows that $x \notin A$. $x \in B$ implies that $x \in A \cup B$. Combining this with $x \notin A$ yields $x \in(A \cup B)-A$. Since this holds for every $x \in B-(A \cap B)$, we have $B-(A \cap B) \subseteq(A \cup B)-A$.

Alternatively:
proof using logical equivalences

$$
\begin{aligned}
& x \in(A \cup B)-A \equiv(x \in A \vee x \in B) \wedge x \notin A \text { deft of } \cup,- \\
& \equiv(x \in A \vee x \in B) \wedge \neg(x \in A) \operatorname{deg}^{n} \text { of } \notin \\
& \text { Distributive } \equiv(x \in A \wedge \neg(x \in A)) v(x \in B \wedge \neg(\mathbb{C A A})) \\
& \text { property } \equiv F V(x \in B \wedge \neg(x \in A)) \text { Negation law } \\
& \equiv(x \in B \wedge(x \in A)) \text { identity law } \\
& \equiv x \in B \wedge x \notin A \text {, otherwise } x \\
& \equiv x \in B \wedge 2 \notin A \cap B \text { would be in } A \text {. } \\
& \equiv x \in B-(A \cap B) \text {. }
\end{aligned}
$$

2. (10 points) Prove that for all integers n, n is odd if and only if $n^{3}+7$ is even.
solution: Let $p: n$ is odd

$$
q: n^{3}+7 \text { is even }
$$

We kill show that $p \rightarrow q$ and $q \rightarrow p$ Proof of $p \rightarrow q$:
Suppose n is odd. Then $n=2 k+1 ; k \in \mathbb{Z}$.
Thus, $n^{3}+7=(2 k+1)^{3}+7=8 k^{3}+12 k^{2}+6 k+1+7$

$$
\begin{aligned}
& =8 k^{3}+12 k^{2}+6 k+8 \\
& =2(\underbrace{4 k^{3}+6 k^{2}+3 k+4}_{\text {an integer }}) \\
& \quad b / c \quad k \in \mathbb{Z}
\end{aligned}
$$

Hence, $n^{3}+7$ is even.
Proof of $q \rightarrow p$:
We prove this by contrapositive, lie., $\neg p \rightarrow 7 q$. Here,

Ip: n is even
$\neg q: n^{3}+7$ is odd.
Suppose n is even. Then $n=2 k ; k \in \mathbb{Z}$.
Thus, $n^{3}+7=(2 k)^{3}+7=8 k^{3}+7$

$$
=8 k^{3}+6+1=2 \underbrace{\left(4 k^{3}+3\right)}_{\text {an integer }}+1
$$

Hence, $n^{3}+7$ is odd.
3. (20 points) The universe of discourse for all variables below is the set of integers, \mathbb{Z}. Determine the truth value of each of the following propositions. For this problem, you do not need to justify your answers.
(a) $(\exists n)\left(n^{2}<0\right)$

FALSE : $n^{2} \geqslant 0$ always for $n \in \mathbb{Z}$
(b) $(\forall n)\left(n^{2}>0\right)$

FALSE; Take $n=0$.
(c) $(\exists m)(\forall n)\left(n^{m}=n\right)$

TRUE, Take $m=1$.
(d) $(\forall m)(\exists n)\left(n^{2}<m\right)$

FALSE, Take $m=0$.
(e) $(\forall n)(\exists m)\left(n^{2}<m\right)$

TRUE Let $n \in \mathbb{Z}$. Take $m=n^{2}+1$.
(f) $(\exists m)(\exists n)[(n m=4) \rightarrow(n+m=-5)]$

TRUE Take $n=-1, m=-4$
(g) $(\exists m)(\exists n)[(n+m \neq 0) \rightarrow(n m=1)]$

TRUE. For $m=3, n=-3, m+n \neq 0$ is F so conditional is T, regardless of Truth value of $m n=1$.
4. (20 points) Let p, q, r be propositions.
(a) Show that

$$
[(\neg p \vee q) \wedge \neg(q \wedge \neg r)] \quad \longrightarrow \quad r \vee \neg p
$$

is a tautology. If you are using a truth table, then you must explain what about your table allows you to conclude the desired result.
solution: using treith table
Let $A=\neg p \vee q, B=q \wedge \neg r, C=r \vee \neg p$

P	q	π	$\neg p$	A	$\neg r$	B	$\neg B$	$A \wedge \neg B$	C	$(A \wedge \neg B) \rightarrow C$
T	T	T	F	T	F	F	T	T	T	T
T	T	F	F	T	T	T	F	F	F	T
T	F	T	F	F	F	F	T	F	T	T
T	F	F	F	F	T	F	T	F	F	T
F	T	T	T	T	F	F	T	T	T	T
F	T	F	T	T	T	T	F	F	T	T
F	F	T	T	T	F	F	T	T	T	T
F	F	F	T	T	T	F	T	T	T	T

since the last column is all True, thus, The given conditional is a tautology.
Alternatively:
using existing logical equivalences:

$$
\begin{aligned}
& \neg p \vee q \equiv p \rightarrow q, \quad \text { cond-disj } \\
& \neg(q \wedge \neg r) \equiv \neg q \vee \neg(\neg r) \equiv \neg q \vee r \stackrel{\uparrow}{\equiv} q \rightarrow r
\end{aligned}
$$

De Morgan's Double Negation

$$
\begin{aligned}
{[(\neg p \vee q) \wedge \neg(q \wedge \neg r)] } & \equiv(p \rightarrow q) \wedge(q \wedge r) \\
& \equiv p \rightarrow r
\end{aligned}
$$

On the other hand,

$$
r \vee \neg p \equiv \neg p \vee r \equiv p \rightarrow x
$$ commutativity cond-disj

Thus, The given conditional is always True, i.e., is a tautology.
(b) Show that

$$
\neg(q \vee(\neg p)) \vee(q \wedge p) \equiv p
$$

If you are using a truth table, then you must explain what about your table allows you to conclude the desired result.
solution: using truth table
Let $q \vee(\neg p)=A \quad, \quad q \wedge p=B$

p	q	$\neg p$	A	$\neg A$	B	$\neg A \vee B$
T	T	F	T	F	T	T
T	F	F	F	T	F	T
F	T	T	T	F	F	F
F	F	T	T	F	F	F

lIst and last column
have same truth values, thus, logically equivalent.
Alternatively:
using existing logical equivalences:

$$
\neg(q \vee(\neg p)) \vee(q \wedge p) \equiv[(\neg q) \wedge(\neg(\neg p))] \vee(q \wedge p)
$$

by De Morgan's

$$
\text { by Double negation } \equiv((\neg q) \wedge p) \vee\left(q^{\wedge} p\right)
$$

by commutative law $\equiv(p \wedge \neg q) \vee(p \wedge q)$
by Distributive law $\equiv p \wedge(\neg q \vee q)$
by Negation law $\equiv p \wedge T$
by identity law $\equiv P$
5. (10 points) Prove that $\sqrt{10}$ is irrational.

Solution: For the sake of contradiction, assume that $\sqrt{10}$ is not irrational. Then $\sqrt{10}$ is rational, so

$$
\sqrt{10}=\frac{p}{q},
$$

where p, q are integers and $q \neq 0$. We also assume that the fraction $\frac{p}{q}$ is in lowest terms, i.e., all common factors have been cancelled. Then

$$
\sqrt{10} q=p
$$

squaring both sides, we get

$$
10 q^{2}=p^{2}
$$

Thus, p^{2} is even. We now prove the following claim:

Claim: "For all integers p, if p^{2} is even, then p is even."
Proof of Claim: We establish this result by contrapositive proof. Suppose p is not even, then p is odd. So $p=2 k+1$ for some integer k. Therefore,

$$
p^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1 .
$$

Since $2 k^{2}+2 k$ is an integer (because k is an integer), we conclude that p^{2} is odd and hence, p^{2} is not even. Thus, we have prove that "if p is odd (i.e., not even), then p^{2} is odd (i.e., not even)", which is equivalent to "if p^{2} is even, then p is even".
Since p is even, we have $p=2 k$ for some integer k. Plugging this value of p into $10 q^{2}=p^{2}$ yields

$$
10 q^{2}=(2 k)^{2}=4 k^{2}
$$

hence, $5 q^{2}=2 k^{2}$. This means that $5 q^{2}$ is even, i.e., $5 q^{2}$ is a multiple of 2 , which implies that q^{2} is a multiple of 2 , so q^{2} is even (since 5 is odd, thus not a multiple of 2). And by previous claim, we see that q is even.
Therefore, we have that p and q are even, i.e., there is a common multiple of 2 , which contradicts the fact that the fraction $\frac{p}{q}$ is in the lowest terms. Thus, our initial assumption $\sqrt{10}$ is not irrational is wrong. Hence, we conclude that $\sqrt{10}$ is irrational.

6. (20 points)

(a) (5pts) State the definition of the power set, $\mathcal{P}(A)$, of a set A.

Solution: The power set of a set A is the set whose elements are all the subsets of A.
(b) (5pts) Consider the sets: $P=\{1,4,9,16\}, Q=\{-2,-1,0,1,2\}, R=\{1,1,2,2,2,4\}$.

- Compute $P-R$.
$P-R=\{9,16\}$
- Compute $Q \cup R$.
$Q \cup R=\{-2,-1,0,1,2,4\}$
- Compute $(P \cup R) \cap Q$.

$$
(P \cup R) \cap Q=\{1,2,4,9,16\} \cap Q=\{1,2\}
$$

- Compute $|R|$.
$|R|=3$
- Compute the power set $\mathcal{P}(R)$.

$$
\mathcal{P}(R)=\{\emptyset,\{1\},\{2\},\{4\},\{1,2\},\{1,4\},\{2,4\},\{1,2,4\}\}
$$

(c) (10pts) Let A and B be sets inside a universe \mathcal{U} with $|\mathcal{U}|=30,|A|=12,|A \cap B|=10$ and $|\overline{A \cup B}|=12$. Find $|B|$.

Solution: We will use the following identity (which is called the Inclusion-Exclusion Principle)

$$
|A \cup B|=|A|+|B|-|A \cap B| .
$$

Observe that

$$
|\overline{A \cup B}|=|\mathcal{U}|-|A \cup B|,
$$

thus,

$$
|A \cup B|=|\mathcal{U}|-|\overline{A \cup B}|=30-12=18 .
$$

Hence,

$$
|B|=|A \cup B|-|A|+|A \cap B|=18-12+10=16
$$

