Math 150: Discrete Mathematics

Midterm Exam 1- Practice Exam C
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1. (20 points) Prove or disprove (i.e., give a counterexample to) the following identity for
sets A, B:

(AUB)—A=B—-(ANB).
Solution: Proof using the double inclusion of sets. We will prove that
(AUB)—ACB—-(ANB),

and

B—(ANB)C (AUB) - A.

Suppose z € (AUB) — A. Thenz € AUBandx ¢ A. xt € AUB means z € Aor z € B.
But we know that ¢ A so we must have x € B. On the other hand, # ¢ A implies that
r ¢ ANB. Since x € B and x ¢ AN B, we have © € B— (AN B). Since this holds for every
r€(AUB)— A, we have (AUB) - AC B— (ANB).

Now suppose x € B — (AN B). Then x € B and © ¢ AN B. Thus, it follows that = ¢ A.
xr € B implies that x € AU B. Combining this with « ¢ A yields z € (AU B) — A. Since
this holds for every x € B — (AN B), we have B— (AN B) C (AUB) — A.
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2. (10 points) Prove that for all integers n, n is odd if and only if n® + 7 is even.
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3. (20 points) The universe of discourse for all variables below is the set of integers, Z.
Determine the truth value of each of the following propositions. For this problem, you

do not need to justify your answers.

(a) (3n) (n* < 0)

FALIE | 7o al\ﬂaﬁb gorx meZ

(b) (Vn) (n? > 0)
FALSE ; Take wn=0.

(c) (3m)(Vn) (n™ = n)

TRUE . Take wm =1,
(d) (Vm)(3n) (n* <m)

FALSE | Toake w=0.

(e) (VYn)(Tm) (n* < m)

2

TRUE . lut me€Z. Take wwA = m +1.

(1) Gm)(3n) [(nm = 4) = (n+m = —5)]

TRUE Ta ke Nn=-l, m =%

(8) (Fm)(@En) [(n+m #0) = (nm = 1)]
TRUE. For w=3, n=-3 , mitngo s £
no cendiHenol 1% T, /*u-aa.ndLLM
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4. (20 points) Let p,q,r be propositions.

(a) Show that
[((kpVOA=(gAN—T)] — rV-p

is a tautology. If you are using a truth table, then you must explain what

about your table allows you to conclude the desired result.

solution: «um‘uﬁ touFh tabla

ket A =TIplg, B= gax &= xV=p
Pl g|C|plA Y B | IB| ANTB|LC (AA"IE))-—PC
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(b) Show that
=(qV (=p))V(gAp) =p.

If you are using a truth table, then you must explain what about your table

allows you to conclude the desired result.

solution: Mbi'w% truth tabls

lat g V(p)=A , gAp =258
Fl9| P |A|TA | B|TIAVE
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5. (10 points) Prove that /10 is irrational.

Solution: For the sake of contradiction, assume that 1/10 is not irrational. Then /10 is
rational, so

V10 =

)

ESH S

where p, q are integers and g # 0. We also assume that the fraction b is in lowest terms, i.e.,
q
all common factors have been cancelled. Then

V10q = p,

squaring both sides, we get
104 = p*.

Thus, p? is even. We now prove the following claim:

Claim: “For all integers p, if p? is even, then p is even.”
Proof of Claim: We establish this result by contrapositive proof. Suppose p is not even, then
p is odd. So p = 2k + 1 for some integer k. Therefore,

PP =2k +1)° = 4k* + 4k +1 = 2(2K* +2k) + 1.

Since 2k? + 2k is an integer (because k is an integer), we conclude that p? is odd and hence,
p? is not even. Thus, we have prove that “if p is odd (i.e., not even), then p* is odd (i.e., not
even)”, which is equivalent to “if p? is even, then p is even”.
Since p is even, we have p = 2k for some integer k. Plugging this value of p into 10 ¢*> = p?
yields

10 ¢ = (2k)* = 4k?,

hence, 5¢? = 2k2. This means that 5¢? is even, i.e., 5¢? is a multiple of 2, which implies
that ¢* is a multiple of 2, so ¢? is even (since 5 is odd, thus not a multiple of 2). And by
previous claim, we see that ¢ is even.

Therefore, we have that p and ¢ are even, i.e., there is a common multiple of 2, which

contradicts the fact that the fraction ~ is in the lowest terms. Thus, our initial assumption

v/10 is not irrational is wrong. Hence, we conclude that /10 is irrational.
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6. (20 points)

(a) (5pts) State the definition of the power set, P(A), of a set A.

Solution: The power set of a set A is the set whose elements are all the subsets of A.

(b) (5pts) Consider the sets: P = {1,4,9,16}, @ = {-2,-1,0,1,2}, R ={1,1,2,2,2,4}.

e Compute P — R.
P—R=1{9,16}

e Compute Q U R.
QUR={-2,-1,0,1,2,4}

e Compute (PUR)NQ.
(PUR)NQ ={1,2,4,9,16} N Q = {1,2}

e Compute |R|.
|R| =3

e Compute the power set P(R).

P(R) = {0, {1}, {2}, {4}, {1, 2}, {1, 4},{2,4},{1,2,4}}

(c¢) (10pts) Let A and B be sets inside a universe U with [U| = 30, |A| = 12, |[ANB| =10
and |[AU B| = 12. Find |B|.

Solution: We will use the following identity (which is called the Inclusion-Exclusion
Principle)
|AU B| = |A| +|B| — |AN Bj.

Observe that
[AUB| = U - |AU B,
thus,
|JAUB|=U|—-|AUB|=30—-12=18.

Hence,
|B| =]AUB| - |A|+|ANB| =18 — 12+ 10 = 16.



