Math 150: Discrete Mathematics

Midterm Exam 1- Practice Exam C

NAME (please print legibly):	Solutions
Your University ID Number:	
Your University email	

Indicate your instructor with a check in the appropriate box:

Dannenberg	MW 10:25-11:40am	
Kumar	TR 9:40-10:55am	

- You are responsible for checking that this exam has all 8 pages.
- No calculators, phones, electronic devices, books, notes are allowed during the exam.
- Show all work and justify all answers, unless specified otherwise.

Please **COPY** the HONOR PLEDGE and **SIGN**:

I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.

HONOR PLEDGE:

YOUR SIGNATURE:_____

1. (20 points) Prove or disprove (i.e., give a counterexample to) the following identity for sets A, B:

$$(A \cup B) - A = B - (A \cap B).$$

Solution: Proof using the double inclusion of sets. We will prove that

$$(A \cup B) - A \subseteq B - (A \cap B),$$

and

$$B - (A \cap B) \subseteq (A \cup B) - A.$$

Suppose $x \in (A \cup B) - A$. Then $x \in A \cup B$ and $x \notin A$. $x \in A \cup B$ means $x \in A$ or $x \in B$. But we know that $x \notin A$ so we must have $x \in B$. On the other hand, $x \notin A$ implies that $x \notin A \cap B$. Since $x \in B$ and $x \notin A \cap B$, we have $x \in B - (A \cap B)$. Since this holds for every $x \in (A \cup B) - A$, we have $(A \cup B) - A \subseteq B - (A \cap B)$.

Now suppose $x \in B - (A \cap B)$. Then $x \in B$ and $x \notin A \cap B$. Thus, it follows that $x \notin A$. $x \in B$ implies that $x \in A \cup B$. Combining this with $x \notin A$ yields $x \in (A \cup B) - A$. Since this holds for every $x \in B - (A \cap B)$, we have $B - (A \cap B) \subseteq (A \cup B) - A$.

Alternatively:

$$proof$$
 wring logical equivalences
 $x \in (A \cup B) - A \equiv (x \in A \lor x \in B) \land x \notin A \quad def^n of \cup, -$
 $\equiv (x \in A \lor x \in B) \land \neg (x \in A) \quad def^n of \notin$
 $Distributive \equiv (x \in A \land \neg (x \in A)) \lor (x \in B \land \neg (x \in A))$
 $property$
 $\equiv F \lor (x \in B \land \neg (x \in A)) \lor (x \in B \land \neg (x \in A))$
 $\equiv (x \in B \land \neg (x \in A)) \lor (x \in B \land \neg (x \in A))$
 $\equiv x \in B \land \neg (x \in A))$ identity law
 $\equiv (x \in B \land \neg (x \in A))$ identity law
 $\equiv x \in B \land x \notin A$
 $\equiv x \in B \land x \notin A$
 $\equiv x \in B \land (A \land B)$.

2. (10 points) Prove that for all integers n, n is odd if and only if $n^3 + 7$ is even.

bolution: Let
$$p: n$$
 is odd
 $q: n^2+7$ is even
We will show that $p \rightarrow q$ and $q \rightarrow p$
Proof of $p \rightarrow q$:
Suppose n is odd. Then $n = 2K+1$; $K \in \mathbb{Z}$.
Thus, $n^3+7 = (2K+1)^3+7 = 8K^3+12K^2+6K+1+7$
 $= 8K^3+12K^2+6K+8$
 $= 2(4K^3+6K^4+3K+4)$
an integer b/c KeZ
Hence, n^3+7 is even.
Proof of $q \rightarrow p$:
We prove this by contrapositive, i.e.,
 $\neg p \rightarrow \neg q$. Here,
 $\neg p: n$ is even
 $\neg q: n^3+7$ is odd.
Suppose n is even. Then $n = 2K$; $K \in \mathbb{Z}$.
Thus, $n^3+7 = (2K)^3+7 = 8K^3+7$
 $= 8K^3+6+1 = 2(4K^3+3) + 1$
an integer
Hence, n^3+7 is odd.

3. (20 points) The universe of discourse for all variables below is the set of integers, \mathbb{Z} . Determine the truth value of each of the following propositions. For this problem, you do not need to justify your answers.

- (a) (∃n) (n² < 0)
 FALSE ; n² ≈ 0 always for n ∈ Z
 (b) (∀n) (n² > 0)
 FALSE ; Take n = 0.
 (c) (∃m)(∀n) (n^m = n)
 TRUE . Take m = 1.
 (d) (∀m)(∃n) (n² < m)
 FALSE . Take m = 0.
 (e) (∀n)(∃m) (n² < m)
 TRUE . Let n ∈ Z. Take m = n² + 1.
- (f) $(\exists m)(\exists n) [(nm = 4) \to (n + m = -5)]$

(g)
$$(\exists m)(\exists n) [(n+m \neq 0) \rightarrow (nm = 1)]$$

TRUE. FOR m=3, n=-3, m+n ≠0 is F No conditional is T, regardless of Truth value of mn=1.

- 4. (20 points) Let p, q, r be propositions.
 - (a) Show that

(

$$\left[\left(\neg p \lor q \right) \land \neg (q \land \neg r) \right] \quad \longrightarrow \quad r \lor \neg p$$

is a tautology. If you are using a truth table, then you must explain what about your table allows you to conclude the desired result.

P	2	π	٦P	A	רר	В	٦B	ANJB	С	(Ал¬В)→С
T	T	Т	F	Т	F	F	Т	Т	T	Т
T	T	F	F	Τ	T	T	F	F	F	Т
Τ	F	T	F	F	F	F	Т	F	T	au
Т	F	F	F	F	Т	F	T	F	F	T
F	T	Т	T	Т	F	F	T	T	Τ	T
F	T	F	T	Т	T	T	F	F	Τ	T
F	F	Т	T	T	F	F	Т	Т	T	Т
F	F	۶	T	T	T	F	Т	Т	T	Т

since the last column is all True, Thus, the given conditional is a tautology. Alternatively:

> using existing logical equivalences: $\neg P \lor Q \equiv P \Rightarrow Q$, cond-disj $\neg (Q \land \neg R) \equiv \neg Q \lor \neg (\neg R) \equiv \neg Q \lor R \equiv Q \Rightarrow R$ De Morgan's Double Negation

(b) Show that

$$\neg (q \lor (\neg p)) \lor (q \land p) \equiv p.$$

If you are using a truth table, then you must explain what about your table allows you to conclude the desired result.

Solution: using truth table
Let
$$2V(\neg p) = A$$
, $2Ap = B$

$$\begin{array}{c} P & 2 \neg p & A \neg A & B \neg A \vee B \\ \hline T & F & F & F & T & T \\ \hline T & F & F & F & T & F \\ \hline F & T & T & F & F & F \\ \hline F & T & T & F & F & F \\ \hline F & T & T & F & F & F \\ \hline F & T & T & F & F & F \\ \hline & F & T & T & F & F & F \\ \hline & F & T & T & F & F & F \\ \hline & A & ve nome truth values, thus, logically equivalent. \\ Alter natively:
using existing logical equivalences:
 $\neg (2 \vee (\neg p)) \vee (2 \wedge p) \equiv [(\neg 2) \wedge (\neg (\neg p))] \vee (2 \wedge p)$
by Double negation $\equiv ((\neg 2) \wedge p) \vee (2 \wedge p)$
by commutative law $\equiv (P \wedge \neg 2) \vee (P \wedge 2)$
by negation law $\equiv p \wedge T$
by identify law $\equiv p$$$

5. (10 points) Prove that $\sqrt{10}$ is irrational.

Solution: For the sake of contradiction, assume that $\sqrt{10}$ is not irrational. Then $\sqrt{10}$ is rational, so

$$\sqrt{10} = \frac{p}{q},$$

where p, q are integers and $q \neq 0$. We also assume that the fraction $\frac{p}{q}$ is in lowest terms, i.e., all common factors have been cancelled. Then

$$\sqrt{10}\,q=p,$$

squaring both sides, we get

$$10 q^2 = p^2$$

Thus, p^2 is even. We now prove the following claim:

Claim: "For all integers p, if p^2 is even, then p is even."

Proof of Claim: We establish this result by contrapositive proof. Suppose p is not even, then p is odd. So p = 2k + 1 for some integer k. Therefore,

$$p^{2} = (2k+1)^{2} = 4k^{2} + 4k + 1 = 2(2k^{2} + 2k) + 1.$$

Since $2k^2 + 2k$ is an integer (because k is an integer), we conclude that p^2 is odd and hence, p^2 is not even. Thus, we have prove that "if p is odd (i.e., not even), then p^2 is odd (i.e., not even)", which is equivalent to "if p^2 is even, then p is even".

Since p is even, we have p = 2k for some integer k. Plugging this value of p into $10 q^2 = p^2$ yields

$$10 q^2 = (2k)^2 = 4k^2,$$

hence, $5q^2 = 2k^2$. This means that $5q^2$ is even, i.e., $5q^2$ is a multiple of 2, which implies that q^2 is a multiple of 2, so q^2 is even (since 5 is odd, thus not a multiple of 2). And by previous claim, we see that q is even.

Therefore, we have that p and q are even, i.e., there is a common multiple of 2, which contradicts the fact that the fraction $\frac{p}{q}$ is in the lowest terms. Thus, our initial assumption $\sqrt{10}$ is not irrational is wrong. Hence, we conclude that $\sqrt{10}$ is irrational.

6. (20 points)

(a) (5pts) State the definition of the *power set*, $\mathcal{P}(A)$, of a set A.

Solution: The *power set* of a set A is the set whose elements are all the subsets of A.

- (b) (5pts) Consider the sets: $P = \{1, 4, 9, 16\}, Q = \{-2, -1, 0, 1, 2\}, R = \{1, 1, 2, 2, 2, 4\}.$
 - Compute P − R.
 P − R = {9, 16}
 - Compute $Q \cup R$. $Q \cup R = \{-2, -1, 0, 1, 2, 4\}$
 - Compute $(P \cup R) \cap Q$. $(P \cup R) \cap Q = \{1, 2, 4, 9, 16\} \cap Q = \{1, 2\}$
 - Compute |R|.
 |R| = 3
 - Compute the power set \$\mathcal{P}(R)\$.
 \$\mathcal{P}(R) = \$\{\emplose \, \{1\}, \{2\}, \{4\}, \{1,2\}, \{1,4\}, \{2,4\}, \{1,2,4\}\$}\$
- (c) (10pts) Let A and B be sets inside a universe \mathcal{U} with $|\mathcal{U}| = 30$, |A| = 12, $|A \cap B| = 10$ and $|\overline{A \cup B}| = 12$. Find |B|.

Solution: We will use the following identity (which is called the Inclusion-Exclusion Principle)

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

Observe that

$$|\overline{A \cup B}| = |\mathcal{U}| - |A \cup B|,$$

thus,

$$|A \cup B| = |\mathcal{U}| - |\overline{A \cup B}| = 30 - 12 = 18.$$

Hence,

$$|B| = |A \cup B| - |A| + |A \cap B| = 18 - 12 + 10 = 16$$