Math 150: Discrete Mathematics

Midterm Exam 1- Practice Exam C
NAME (please print legibly): \qquad
Your University ID Number:
Your University email

Indicate your instructor with a check in the appropriate box:

Dannenberg	MW 10:25-11:40am	
Kumar	TR 9:40-10:55am	

- You are responsible for checking that this exam has all 9 pages.
- No calculators, phones, electronic devices, books, notes are allowed during the exam.
- Show all work and justify all answers, unless specified otherwise.

Please COPY the HONOR PLEDGE and SIGN:

I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.

HONOR PLEDGE:

YOUR SIGNATURE:

1. (20 points) Prove or disprove (i.e., give a counterexample to) the following identity for sets A, B :

$$
(A \cup B)-A=B-(A \cap B)
$$

2. (10 points) Prove that for all integers n, n is odd if and only if $n^{3}+7$ is even.
3. (20 points) The universe of discourse for all variables below is the set of integers, \mathbb{Z}. Determine the truth value of each of the following propositions. For this problem, you do not need to justify your answers.
(a) $(\exists n)\left(n^{2}<0\right)$
(b) $(\forall n)\left(n^{2}>0\right)$
(c) $(\exists m)(\forall n)\left(n^{m}=n\right)$
(d) $(\forall m)(\exists n)\left(n^{2}<m\right)$
(e) $(\forall n)(\exists m)\left(n^{2}<m\right)$
(f) $(\exists m)(\exists n)[(n m=4) \rightarrow(n+m=-5)]$
(g) $(\exists m)(\exists n)[(n+m \neq 0) \rightarrow(n m=1)]$
4. (20 points) Let p, q, r be propositions.
(a) Show that

$$
[(\neg p \vee q) \wedge \neg(q \wedge \neg r)] \quad \longrightarrow \quad r \vee \neg p
$$

is a tautology. If you are using a truth table, then you must explain what about your table allows you to conclude the desired result.
(b) Show that

$$
\neg(q \vee(\neg p)) \vee(q \wedge p) \equiv p
$$

If you are using a truth table, then you must explain what about your table allows you to conclude the desired result.
5. (10 points) Prove that $\sqrt{10}$ is irrational.

6. (20 points)

(a) (5pts) State the definition of the power set, $\mathcal{P}(A)$, of a set A.
(b) (5pts) Consider the sets: $P=\{1,4,9,16\}, Q=\{-2,-1,0,1,2\}, R=\{1,1,2,2,2,4\}$.

- Compute $P-R$.
- Compute $Q \cup R$.
- Compute $(P \cup R) \cap Q$.
- Compute $|R|$.
- Compute the power set $\mathcal{P}(R)$.
(c) (10pts) Let A and B be sets inside a universe \mathcal{U} with $|\mathcal{U}|=30,|A|=12,|A \cap B|=10$ and $|\overline{A \cup B}|=12$. Find $|B|$.

