MATH 150 - Fall 2023 Midterm Exam #1 - Practice B -SOLUTIONS

Instructions: Closed book, no notes. Give reasons for all of your answers (except for the individual entries in the truth table in #1), and give a full proof for #4.

1. Use a truth table to show that the following is a tautology:

$$\neg (p \land \neg q \land (p \to q)).$$

Soln. Using the definitions, of negation, conditional and triple conjunction to fill the 3rd, 4th and 5th columns, and the negation again to fill the 6th, we obtain

p	q	$\neg q$	$p \to q$	$p \land \neg q \land (p \to q)$	$\neg (p \land \neg q \land (p \to q))$
Т	Т	F	Т	F	Т
Т	F	Т	F	Т	Т
F	Т	F	Т	F	Т
F	F	Т	Т	F	Т

Since the last column is all "T"s, the compound proposition (statement) is a tautology.

(continued)

2. Determine the truth value of each of the following propositions, if the universe (domain of discourse) is the set \mathbb{R} of all real numbers.

Soln.

(a) $(\exists y \forall x) (x^2 = y^3)$

This is False, since there is no one y which is a cube root of every number of the form x^2 (which can be any nonnegative real number).

(b) $(\forall x \exists y) (x^2 = y^3)$

This is True, since for every $x \in \mathbb{R}$, $x^2\mathbb{R}$ and every real number has a unique cube root (as can be shown in calculus using the Intermediate Value Theorem (for existence) and the strict monotonicity of $y \to y^3$ (for uniqueness)).

(c)
$$(\forall x \exists ! y) (x^2 = y^3)$$

This is also True, by the uniqueness that was described in (b).

(d)
$$(\forall y \exists x \exists z) (x + y = z)$$

This is True. For any y, there are many pairs of numbers x, z such that x + y = z: let x be any number, and then just define z to be x + y.

(e) $(\exists x \forall y \exists z) (x + y = z)$

This is True. In fact, any choice of x makes the remaining doublequantified statement true: given any y, just take z = x + y.

(f) $(\exists x \exists z \forall y) (x + y = z)$

This is False. No matter what x and z are, picking $y \neq z - x$ makes the equation false, so the $\forall y$ is false.

(continued)

3. In the universe (domain of discourse) $U = \mathbb{Z}$ = the integers, let $A = \{0\}, B = \{-1, +1\}, E$ = the even integers and O = the odd integers. Find each of the following sets:

Soln.

(a)
$$\overline{E} = \{n \in \mathbb{Z} | n \notin E\} =$$
 the odd integers $= O$
(b) $E - A = \{n | n \in E \land n \notin A\} = \{n | n \text{ is a nonzero even integer}\}$
(c) $O - A = O$, since $A \cap O = \emptyset$.
(d) $\overline{(A \cup B)} = \{n | n \notin A \cup B\} = \{n | n \neq -1, 0, 1\} = \{n \text{ s.t. } |n| \ge 2\}.$

4. Prove the following:

Thm. Suppose that $a, b, c, m \in \mathbb{Z}$ are integers such that a|b and a|m but $a \not\mid c$. Prove that the equation mx + b = c has no solution x in the integers.

Soln. Suppose not. (I.e., proof by contradiction.) Then there does exist an $x \in \mathbb{Z}$ such that mx + b = c.

Since a|b and a|m, there exist $k, l \in \mathbb{Z}$ such that b = ka and m = la. This implies that

$$c = mx + b = (la)x + (ka) = (lx + k)a.$$

Since $lx + k \in \mathbb{Z}$, this implies that a|c, contradicting the assumption that $a \not| c$. Q.E.D.