MATH 150 - Fall 2023 Midterm Exam \#1 - Practice B SOLUTIONS

Instructions: Closed book, no notes. Give reasons for all of your answers (except for the individual entries in the truth table in \#1), and give a full proof for $\# 4$.

1. Use a truth table to show that the following is a tautology:

$$
\neg(p \wedge \neg q \wedge(p \rightarrow q)) .
$$

Soln. Using the definitions, of negation, conditional and triple conjunction to fill the 3rd, 4th and 5 th columns, and the negation again to fill the 6 th, we obtain

p	q	$\neg q$	$p \rightarrow q$	$p \wedge \neg q \wedge(p \rightarrow q)$	$\neg(p \wedge \neg q \wedge(p \rightarrow q))$
T	T	F	T	F	T
T	F	T	F	T	T
F	T	F	T	F	T
F	F	T	T	F	T

Since the last column is all "T"s, the compound proposition (statement) is a tautology.

(continued)

2. Determine the truth value of each of the following propositions, if the universe (domain of discourse) is the set \mathbb{R} of all real numbers.

Soln.

(a) $(\exists y \forall x)\left(x^{2}=y^{3}\right)$

This is False, since there is no one y which is a cube root of every number of the form x^{2} (which can be any nonnegative real number).
(b) $(\forall x \exists y)\left(x^{2}=y^{3}\right)$

This is True, since for every $x \in \mathbb{R}, x^{2} \mathbb{R}$ and every real number has a unique cube root (as can be shown in calculus using the Intermediate Value Theorem (for existence) and the strict monotonicity of $y \rightarrow y^{3}$ (for uniqueness)).
(c) $(\forall x \exists!y)\left(x^{2}=y^{3}\right)$

This is also True, by the uniqueness that was described in (b).
(d) $(\forall y \exists x \exists z)(x+y=z)$

This is True. For any y, there are many pairs of numbers x, z such that $x+y=z$: let x be any number, and then just define z to be $x+y$.
(e) $(\exists x \forall y \exists z)(x+y=z)$

This is True. In fact, any choice of x makes the remaining doublequantified statement true: given any y, just take $z=x+y$.
(f) $(\exists x \exists z \forall y)(x+y=z)$

This is False. No matter what x and z are, picking $y \neq z-x$ makes the equation false, so the $\forall y$ is false.

(continued)

3. In the universe (domain of discourse) $U=\mathbb{Z}=$ the integers, let $A=$ $\{0\}, B=\{-1,+1\}, E=$ the even integers and $O=$ the odd integers. Find each of the following sets:

Soln.
(a) $\bar{E}=\{n \in \mathbb{Z} \mid n \notin E\}=$ the odd integers $=O$
(b) $E-A=\{n \mid n \in E \wedge n \notin A\}=\{n \mid n$ is a nonzero even integer $\}$
(c) $O-A=O$, since $A \cap O=\emptyset$.
(d) $\overline{(A \cup B)}=\{n \mid n \notin A \cup B\}=\{n \mid n \neq-1,0,1\}=\{n$ s.t. $|n| \geq 2\}$.
4. Prove the following:

Thm. Suppose that $a, b, c, m \in \mathbb{Z}$ are integers such that $a \mid b$ and $a \mid m$ but $a \nmid c$. Prove that the equation $m x+b=c$ has no solution x in the integers.

Soln. Suppose not. (I.e., proof by contradiction.) Then there does exist an $x \in \mathbb{Z}$ such that $m x+b=c$.

Since $a \mid b$ and $a \mid m$, there exist $k, l \in \mathbb{Z}$ such that $b=k a$ and $m=l a$.
This implies that

$$
c=m x+b=(l a) x+(k a)=(l x+k) a .
$$

Since $l x+k \in \mathbb{Z}$, this implies that $a \mid c$, contradicting the assumption that $a \nmid c$. Q.E.D.

