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1. (20 points) Using truth tables, determine if each of the following propositions is a

tautology, a contradiction or neither.

(i) (10 points) (p → q) ↔ (¬p ∨ q)

p q p → q ¬p ¬p ∨ q (p → q) ↔ (¬p ∨ q)

T T T F T T

T F F F F T

F T T T T T

F F T T T T

Since the last column is all “T”s, the compound statement is a tautology.

(ii) (10 points) ¬(p ↔ q) ↔ (¬p ↔ ¬q).

p q p ↔ q ¬(p ↔ q) ¬p ¬q ¬p ↔ ¬q ¬(p ↔ q) ↔ (¬p ↔ ¬q)
T T T F F F T F

T F F T F T F F

F T F T T F F F

F F T F T T T F

Since the last column is all “F”s, the compound statement is a contradiction.
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2. (20 points) Determine the truth values of each of the following propositions, if the

domain of discourse is the set of integers. (5 pts each)

(a) ∀n(100 · n ≥ n2).

The predicate is T for n = 0. For n > 0, dividing by n preserves the inequality, and it

holds iff 100 ≥ n. Thus, it fails for n ≥ 101, and so the universally quantified statement

is F.

(b) ∀n∀m∃ℓ(n2 +m2 = ℓ2).

The statement is F. To show this, it suffices to show (∃n∃m∀ℓ)(n2 +m2 ̸= ℓ2). As one

example, if we take, n = 2, m = 2, then n2 +m2 = 8, and ±
√
8 /∈ Z.

(c) ∃n∀k(nk = n2).

This is T. To show existence, we can take n = 0, so that (∀k)0 · k = 02.

(d) ∃k∀n(n(n+ 1) = 2k).

This is F. To show this, we need to show (∀k∃n)
(
n(n + 1) ̸= 2k

)
. For k fixed, so is

2k, and we can certainly find an n such that n(n + 1) ̸= 2k. For example, we can take

n = 2k, so that n(n+ 1) = 2k + 4k2 ̸= 2k if k ̸= 0, and n = 1 if k = 0.

3



3. (30 points) Consider the following sets:

A = {0, 2, 4, 6, 8}, B = {3, 5, 7} and C = {5, 6, 7, 8, 9}

If U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is the universal set, find the following sets [added: or cardi-

nality in (a)] (10 pts each):

(a) |A ∪B ∪ C|

|A ∪B ∪ C| = |{0, 2, 3, 4, 5, 6, 7, 8, 9}|, so its cardinality is 9.

(b) (A ∩B)

As a general set-theoretic identity, by DeMorgan and double-negation we have

(A ∩B) = A ∪B = A ∪B.

Applying this to these particular A and B, we have (A ∩B) = {0, 2, 3, 4, 5, 6, 7, 8}.

(c) |(B × C)− (C ×B)|. By definition of set difference,

(B × C)− (C ×B) = {(n,m)|(n ∈ B ∧m ∈ C) ∧ ¬(n ∈ C ∧m ∈ B)}

= {(n,m)|(n ∈ B ∧m ∈ C) ∧ (n /∈ C ∨m /∈ B)} by DeMorgan

= {(n,m)|n ∈ B ∧m ∈ C ∧n /∈ C}∪{(n,m)|n ∈ B ∧m ∈ C ∧m /∈ B} by distributivity

=
(
(B − C)× C

)
∪
(
B × (C −B)

)

=
(
{3} × {5, 6, 7, 8, 9}

)
∪
(
{3, 5, 7} × {6, 8, 9}

)
.

Since 3 elements in the first set in the last line occur in the second set, namely (3, 6), (3, 8), (3, 9),

the union of the two sets has 5+9-3=11 elements.
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4. (30 points)

(a) (10 points) Prove that if A and B are sets, then A ⊆ B if and only if B ⊆ A.

Proof. A ⊆ B iff (∀x)(x ∈ A → x ∈ B) iff (∀x)(x /∈ B → x /∈ A) [by Conditional-

Contrapositive rule of inference] iff B ⊆ A. Q.E.D.

(b) (10 points) Prove that for all positive numbers a and b, we have

a+ b ≥ 2
√
ab

Proof. Using the fact that f(x) = x2 is increasing on [0,∞), and thus preserves

inequalities, we have, for a, b > 0,

a+ b ≥ 2
√
ab iff (a+ b)2 ≥ 4ab iff a2+2ab+ b2 ≥ 4ab iff a2−2ab+ b2 ≥ 0 iff (a− b)2 ≥ 0,

which is T since x2 ≥ 0 for all x ∈ R. Q.E.D.

(c) (10 points) Prove that for every integer n, n is odd iff n2 + 4n+ 1 is even.

Proof. Only if: If n is odd, there exists an integer k such that n = 2k + 1, and then

n2 = 4k2 + 4k + 1. Hence,

n2 + 4n+ 1 = (4k2 + 4k + 1) + (8k + 4) + 1 = 4k2 + 12k + 6

= 2(2k2 + 6k + 3),

which is even since 2k2 + 6k + 2 ∈ Z.

If: We proof this by contraposition. To prove that if n2 + 4n+ 1 is even then n is odd,

it suffices to show that if n is not odd then n2+4n+1 is not even, i.e., if n is even, then

n2 + 4n+ 1 is odd. However, if n is even, n = 2l for some l ∈ Z, and then

n2 + 4n+ 1 = 4l2 + 8l + 1 = 2(2l2 + 4l) + 1

is odd. Q.E.D.
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