Math 150: Discrete Mathematics

Practice Final Exam 2 - Solutions

NAME (please print legibly):
Your University ID Number:
Your University email

Indicate your instructor with a check in the appropriate box:

Dannenberg	MW 10:25-11:40am	
Kumar	TR $9:40-10:55am$	

- You are responsible for checking that this exam has all 7 pages.
- No calculators, phones, electronic devices, books, notes are allowed during the exam.
- Show all work and justify all answers, unless specified otherwise.

Please **COPY** the HONOR PLEDGE and **SIGN**:

I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.

HONOR PLEDGE:

YOUR SIGNATURE:

Part A

1. (10 points)	Using a truth	table, show	that $\neg p \lor$	$q \lor (p \land \neg q)$	is a tautology.
Solution:					

р	q	$\neg p$	$\neg q$	$p \wedge (\neg q)$	$(\neg p) \lor q$	$\neg p \lor q \lor (p \land \neg q)$
Т	Т	\mathbf{F}	F	F	Т	Т
Т	F	F	Т	Т	F	Т
F	Т	Т	F	F	Т	Т
F	F	Т	Т	F	Т	Т

Since the column of the truth table corresponding to our expression is all true, the given expression is a tautology.

2. (15 points) Suppose A and B are sets, $A \oplus B$ is defined to be the set of all x that are in A or B, but not both. Prove that $A \oplus B = A$ if and only if $B = \emptyset$.

Solution: First suppose that $A \oplus B = A$. Suppose for the sake of contradiction that $B \neq \emptyset$. Since $B \neq \emptyset$ we may choose an element $x \in B$. There are two cases: either $x \in A$ or $x \notin A$. If $x \in A$, then $x \in A \cap B$, so $x \notin A \oplus B$ by definition. If $x \notin A$, then since we also have that $x \in B$, we have that $x \in A \oplus B$. But this contradicts the fact that $A \oplus B = A$. Thus, B must be empty.

Now suppose that B is empty. Then $A \cap B = \emptyset$ and $A \cup B = A$. Thus,

 $A \oplus B = (A \cup B) - (A \cap B) = A - \emptyset = A.$

3. (10 points) Prove that if $x = a \cdot b \cdot c$, where a, b and c are positive real numbers, then either $a \le x^{1/3}$, $b \le x^{1/3}$ or $c \le x^{1/3}$.

Solution: Suppose the conclusion false. Then $a > x^{1/3}$, $b > x^{1/3}$ and $c > x^{1/3}$. Hence, $x = a \cdot b \cdot c > x^{1/3} \cdot x^{1/3} \cdot x^{1/3} = x$, i.e., x > x, which is a contradiction.

- 4. (20 points) Prove each of the following statements.
 - (i) $x^3 + 2x^2 6$ is big-*O* of x^3 .

Solution: For x > 2, we have

 $x^3 + 2x^2 - 6 < x^3 + x \cdot x^2 + x^3 = 3x^3.$

Hence, with the witnesses k = 2 and C = 3, we have that $x^3 + 2x^2 - 6$ is big- \mathcal{O} of x^3 .

(ii) x^3 is NOT big- \mathcal{O} of x^2 .

Solution: If x^3 is big- \mathcal{O} of x^2 , then there are positive integers k and C such that for all x > k, we have that $x^3 < Cx^2$. Dividing by x^2 , this gives x < C. But if x is any integer greater than both k and C, it is not true that x < C. This is a contradiction. Hence, it is false that x^3 is big- \mathcal{O} of x^3 .

5. (15 points) Suppose $p \neq q$ and $r \neq s$ are prime numbers such that $pq^2 = rs^2$. Choose all the correct options that apply (there could be one or more) and give a brief justification for the option(s) you selected:

(i) p < r might be true since q > s could be true.

False

```
(ii) q = r is possibly true.
```

False

(iii) q = r and $p = \frac{s^2}{r}$ must be true. False

(iv) q = s must be true.

True. Since p, q are prime, pq^2 has a prime factorization $p \cdot q \cdot q$. Similarly, $rs^2 = r \cdot s \cdot s$. By the Fundamental theorem of arithmetic, any number has a unique prime factorization, so since $pq^2 = rs^2$, we must have p = r and q = s.

(v) q = s might be true but it is false when p = 2.

False

6. (14 points)

(i) What is the binary expansion of $(300)_{10}$?

Solution: We repeatedly divide by 2 to get

$$300 = 2 \cdot 150 + 0$$

$$150 = 2 \cdot 75 + 0$$

$$75 = 2 \cdot 37 + 1$$

$$37 = 2 \cdot 18 + 1$$

$$18 = 2 \cdot 9 + 0$$

$$9 = 2 \cdot 4 + 1$$

$$4 = 2 \cdot 2 + 0$$

$$2 = 2 \cdot 1 + 0$$

$$1 = 2 \cdot 0 + 1$$

Thus, $300 = (100101100)_2$.

(ii) Find $9^{300} \mod 10$.

Solution: Observe that $9 \equiv -1 \pmod{10}$. Thus, $9^2 \equiv 1 \pmod{10}$. Hence,

 $9^{300} = 9^{2 \cdot 150} = (9^2)^{150} \equiv 1^{150} \equiv 1 \pmod{10}.$

7. (16 points) Determine the truth value of each of the following statements, giving reasons. The universe of discourse is the set of integers, \mathbb{Z} .

(i) $(\forall n)(\exists m) m = n^3$

True. For any $n \in \mathbb{Z}$, let $m = n^3$.

(ii) $(\exists n)(\forall m) m = n^3$

False. For any $n \in \mathbb{Z}$, there is some $m \in \mathbb{Z}$ such that $m \neq n^3$.

(iii) $(\exists k)(\forall m)(\exists n) m = n + k^3$

True. Let k = 0. For any $m \in \mathbb{N}$, let n = m.

(iv) $(\forall m)(\exists n)(\exists k) \ ((m = n + k^3) \longrightarrow (m = n^3)).$

True. For any $m \in \mathbb{Z}$, choose n = m and k = 1. Then $m \neq n + k^3$, so the implication is True.

Part B

8. (10 points) Find all odd integers which have the property that they both leave a remainder of 4 when divided by 7 and leave a remainder of 5 when divided by 11.

Solution: We seek all integers x such that

 $x \equiv 1 \pmod{2}, \quad x \equiv 4 \pmod{7}, \quad x \equiv 5 \pmod{11}.$

Let $m_1 = 2$, $m_2 = 7$, and $m_3 = 11$, then $m = m_1 m_2 m_3 = 154$, $M_1 = m_2 m_3 = 77$, $M_2 = m_1 m_3 = 22$, and $M_3 = m_1 m_2 = 14$. Let y_k be an inverse of $M_k \mod m_k$ for k = 1, 2, 3. So y_1 is an inverse of 77 mod 2, which is equivalent to 1 mod 2, i.e.,

$$77y_1 \equiv 1 \pmod{2} \iff y_1 \equiv 1 \pmod{2}.$$

Thus, $y_1 = 1$ works.

Next we need to find y_2 , an inverse of 22 mod 7, which is equivalent to 1 mod 7, i.e.,

$$22y_2 \equiv 1 \pmod{7} \iff y_2 \equiv 1 \pmod{7}.$$

Thus, $y_2 = 1$ works in this case too.

Finally, we find y_3 , an inverse of 14 mod 11, which is equivalent to 3 mod 11, i.e.,

$$14y_3 \equiv 1 \pmod{11} \iff 3y_3 \equiv 1 \pmod{11}.$$

Thus, we take $y_3 = 4$.

Therefore, by the Chinese Remainder Theorem, the unique solution mod 154 is

$$x = 1 \cdot M_1 y_1 + 4 \cdot M_2 y_2 + 5 \cdot M_3 y_3 = 1 \cdot 77 \cdot 1 + 4 \cdot 22 \cdot 1 + 5 \cdot 14 \cdot 4 = 77 + 88 + 280 = 445.$$

Since m = 154, the unique solution in Z_{154} is: $445 - (2 \cdot 154) = 137$. Hence, the set of all integers x obeying the conditions are all integers that are congruent to 137 mod 154.

9. (10 points) Find the number s such that $0 \le s \le 26$ and $13s \equiv 1 \pmod{27}$.

Solution: Observe that $27 = 2 \cdot 13 + 1$ so $1 = 27 - 2 \cdot 13$. Now we use the fact that if gcd(a, m) = 1, then we can find s, t (Bezout coefficients) such that 1 = as + mt. Then, we have $as \equiv 1 \pmod{m}$. Thus, with a = 13 and m = 27, we obtain s = -2; however, it is not in our range. Hence,

$$-2 \equiv -2 + 27 \pmod{27} = 25 \pmod{27}$$
.

Therefore, s = 25.

10. (5 points) Associate the letters A, B, ..., Z with the numbers $0, 1, \ldots, 25$. Consider the linear cypher $f : \mathbb{Z}_{26} \to \mathbb{Z}_{26}$ such that f(p) = p - 7.

Encrypt the message HELLO WORLD.

Solution:

$$\begin{array}{c} H \longrightarrow 7 \longrightarrow 0 \longrightarrow A \\ E \longrightarrow 4 \longrightarrow -3 \longrightarrow 23 \longrightarrow X \\ L \longrightarrow 11 \longrightarrow 4 \longrightarrow E \\ L \longrightarrow 11 \longrightarrow 4 \longrightarrow E \\ O \longrightarrow 14 \longrightarrow 7 \longrightarrow H \\ W \longrightarrow 22 \longrightarrow 15 \longrightarrow P \\ O \longrightarrow 14 \longrightarrow 7 \longrightarrow H \\ R \longrightarrow 17 \longrightarrow 10 \longrightarrow K \\ L \longrightarrow 11 \longrightarrow 4 \longrightarrow E \\ D \longrightarrow 3 \longrightarrow -4 \longrightarrow 22 \longrightarrow W \end{array}$$

Encrypted message: AXEEH PHKEW.

11. (10 points) Give a proof by induction that $n! > \frac{1}{4} \cdot 3^n$ for all integers $n \ge 4$.

Solution: <u>Base step</u>: If n = 4, then 4! = 24 and $\frac{1}{4} \cdot 3^4 = \frac{81}{4} = 20 + \frac{1}{4} < 24 = 4!$. Thus, the given inequality is true.

<u>Induction step</u>: Assume for some $k \in \mathbb{N}$ such that $k \ge 4$, we have $k! > \frac{1}{4} \cdot 3^k$. We now want to show that

$$(k+1)! > \frac{1}{4} \cdot 3^{k+1}.$$

Observe that

$$(k+1)! = (k+1) \cdot k! > (k+1) \cdot \frac{1}{4} \cdot 3^k,$$

where the inequality follows from the inductive hypothesis. Since $k \ge 4$, we have $k + 1 \ge 5 > 3$, so

$$(k+1)! > 3 \cdot \frac{1}{4} \cdot 3^k = \frac{1}{4} \cdot 3^{k+1}$$

as desired. This proves that $n! > \frac{1}{4} \cdot 3^n$ for all integers $n \ge 4$.

12. (15 points)

(i) If one has 16 basketball teams in a tournament which requires the teams are first put into 4 groups (of 4 teams). How many ways are there to form the first group?

Solution: There are 16 teams and we are choosing 4. Thus, there are

$$C(16,4) = \frac{16!}{12!\,4!}$$

ways to form the first group.

(ii) Given the first group has been picked, how many ways are there to form the second group?

Solution: As only 12 teams remain, there are

$$C(12,4) = \frac{12!}{8!\,4!}$$

ways to to form the second group.

(iii) Thus, how many distinct ways are there to set up all four groups?

Solution: The number of distinct ways to set up all four groups are

$$C(16,4) \cdot C(12,4) \cdot C(8,4) \cdot 1 = \frac{16! \, 12! \, 8!}{12! \, 4! \, 8! \, 4! \, 4!} = \frac{16!}{(4!)^4}$$