
Math 150: Discrete Mathematics

Practice Final Exam 2
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• You are responsible for checking that this exam has all 13 pages.
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• Show all work and justify all answers, unless specified otherwise.
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YOUR SIGNATURE:



Page 2 of 13

Part A

1. (10 points) Using a truth table, show that ¬p ∨ q ∨ (p ∧ ¬q) is a tautology.



Page 3 of 13

2. (15 points) Supoose A and B are sets, A⊕ B is defined to be the set of all x that are

in A or B, but not both. Prove that A⊕B = A if and only if B = ∅.
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3. (10 points) Prove that if x = a · b · c, where a, b and c are positive real numbers, then

either a ≤ x1/3, b ≤ x1/3 or c ≤ x1/3 .
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4. (20 points) Prove each of the following statements.

(i) x3 + 2x2 − 6 is big-O of x3.

(ii) x3 is NOT big-O of x2.
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5. (15 points) Suppose p 6= q and r 6= s are prime numbers such that pq2 = rs2.

Choose all the correct options that apply (there could be one or more) and give a brief

justification for the option(s) you selected:

(i) p < r might be true since q > s could be true.

(ii) q = r is possibly true.

(iii) q = r and p = s2

r
must be true.

(iv) q = s must be true.

(v) q = s might be true but it is false when p = 2.
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6. (14 points)

(i) What is the binary expansion of (300)10?

(ii) Find 9300 mod 10.
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7. (16 points) Determine the truth value of each of the following statements, giving

reasons. The universe of discourse is the set of integers, Z.

(i) (∀n)(∃m)m = n3

(ii) (∃n)(∀m)m = n3

(iii) (∃ k)(∀m)(∃n)m = n + k3

(iv) (∀m)(∃n)(∃ k) ((m = n + k3) −→ (m = n3)).
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Part B

8. (10 points) Find all odd integers which have the property that they both leave a

remainder of 4 when divided by 7 and leave a remainder of 5 when divided by 11.
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9. (10 points) Find the number s such that 0 ≤ s ≤ 26 and 13s ≡ 1 (mod 27).
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10. (5 points) Associate the letters A, B, . . . , Z with the numbers 0, 1, . . . , 25. Consider

the linear cypher f : Z26 → Z26 such that f(p) = p− 7.

Encrypt the message HELLO WORLD.
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11. (10 points) Give a proof by induction that n! > 1
4
· 3n for all integers n ≥ 4.
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12. (15 points)

(i) If one has 16 basketball teams in a tournament which requires the teams are first put

into 4 groups (of 4 teams). How many ways are there to form the first group?

(ii) Given the first group has been picked, how many ways are there to form the second

group?

(iii) Thus, how many distinct ways are there to set up all four groups?


