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1.

(a) Determine whether (2n + n2)(n3 + 3n) is big O of the following

• 6n

• n5
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(b) Prove or disprove that n log(n2 + 1) + n2 log n is Big Θ of each of the following

• n log(n2 + 1)

• n2 log n
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2. (a) Determine whether f : {x ∈ R+|x ̸= 1} → R defined by f(x) = 1/ ln(x) (this is the
natural log, base e) is

• injective

• surjective (if not, give the codomain over which f is surjective)

• bijective
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(b) Determine whether f : {x ∈ R|x > 1} → R defined by f(x) = 1/
√

ln(x) (this is the
natural log, base e) is

• injective

• surjective (if not, give the codomain over which f is surjective)

• bijective



Midterm Practice Exam 2, Math 150 Thursday, June 10, 2024 Page 6 of 12

3. (a) Solve the following system of congruences,
x ≡ 1 mod 2

x ≡ 2 mod 3

x ≡ 3 mod 5

x ≡ 4 mod 11
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(b) Convert (BDE5)16 to binary form (base 2).
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(c) Convert (101011001110)2 to its octaldecimal and hexadecimal expansions.
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4. Use modular exponentiation to find 690 mod 13. Your answer should be an integer
between 0 and 12, inclusive.
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5. (a) Solve 89x ≡ 2 mod 232.
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(b) Compute 231002 mod 41 using Fermat’s Little Theorem.
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Proofs to Review Throughout let a, b ∈ Z+, p be prime, and the prime factorizations of a
and b (with all prime factors distinct) be given by

a = px1
1 px2

2 · · · pxℓ
ℓ qz11 qz22 · · · qznn , b = px1

1 px2
2 · · · pyℓℓ r

u1
1 ru2

2 · · · rum
m .

Note all proofs referenced in the textbook can also be found in the class notes. Study
whichever is easier for you to understand.

• Section 4.3, Lemma 1

• Section 4.3, Lemma 2

• Section 4.3, Theorem 3

• Section 4.3, Theorem 7

• Section 4.4, Theorem 1 (In class, we also mentioned but did not prove the inverse is
true as well. Figure out the proof, as it may be assigned on this exam or in the future.)

• Section 4.4, Theorem 2 (Chinese Remainder Theorem The book only proves the
existence part. Remember we also did the uniqueness part in class.)

• gcd(a, b) = p
min(x1,y1)
1 p

min(x2,y2)
2 · · · pmin(xℓ,yℓ)

ℓ

• lcm(a, b) = p
max(x1,y1)
1 p

max(x2,y2)
2 · · · pmax(xℓ,yℓ)

ℓ qz11 qz22 · · · qznn ru1
1 ru2

2 · · · rum
m

• gcd(a, b)lcm(a, b) = ab

• Given distinct primes r1, r2, · · · , rα, m,β1, β2, · · · , βα ∈ Z+, and rβi

i |m ∀ 1 ≤ i ≤ α,
then we have rβ1

1 rβ2

2 · · · rβα
α |m (This was done in class on Thursday, June 6)

• ap−1 ≡ 1 mod p when a ̸ |p and always ap ≡ a mod p(Fermat’s Little Theorem)

Also know the exponent and logarithm rules, as certain problems on the exam
will defintely require some of these!


