Math 150: Discrete Mathematics Midterm Practice Exam 2

Thursday, May 30, 2024

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Your University Email: \qquad
Indicate your instructor with a check in the appropriate box:

> Gotshall

- You are responsible for checking that this exam has all blank pages.
- No calculators, phones, electronic devices, books, or notes are allowed during the exam.
- Show all work and justify all answers, unless specified otherwise.

Please COPY the HONOR PLEDGE and SIGN:
I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.

HONOR PLEDGE:

YOUR SIGNATURE
1.
(a) Determine whether $\left(2^{n}+n^{2}\right)\left(n^{3}+3^{n}\right)$ is big O of the following

- 6^{n}
- n^{5}
(b) Prove or disprove that $n \log \left(n^{2}+1\right)+n^{2} \log n$ is $\operatorname{Big} \Theta$ of each of the following
- $n \log \left(n^{2}+1\right)$
- $n^{2} \log n$

2. (a) Determine whether $f:\left\{x \in \mathbb{R}^{+} \mid x \neq 1\right\} \rightarrow \mathbb{R}$ defined by $f(x)=1 / \ln (x)$ (this is the natural log, base e) is

- injective
- surjective (if not, give the codomain over which f is surjective)
- bijective
(b) Determine whether $f:\{x \in \mathbb{R} \mid x>1\} \rightarrow \mathbb{R}$ defined by $f(x)=1 / \sqrt{\ln (x)}$ (this is the natural log, base e) is
- injective
- surjective (if not, give the codomain over which f is surjective)
- bijective

3. (a) Solve the following system of congruences,

$$
\left\{\begin{array}{l}
x \equiv 1 \quad \bmod 2 \\
x \equiv 2 \quad \bmod 3 \\
x \equiv 3 \quad \bmod 5 \\
x \equiv 4 \quad \bmod 11
\end{array}\right.
$$

(b) Convert $(B D E 5)_{16}$ to binary form (base 2).
(c) Convert (101011001110) $)_{2}$ to its octaldecimal and hexadecimal expansions.
4. Use modular exponentiation to find $6^{90} \bmod 13$. Your answer should be an integer between 0 and 12, inclusive.
5. (a) Solve $89 x \equiv 2 \bmod 232$.
(b) Compute $23^{1002} \bmod 41$ using Fermat's Little Theorem.

Proofs to Review Throughout let $a, b \in \mathbb{Z}^{+}, p$ be prime, and the prime factorizations of a and b (with all prime factors distinct) be given by

$$
a=p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{\ell}^{x_{\ell}} q_{1}^{z_{1}} q_{2}^{z_{2}} \cdots q_{n}^{z_{n}}, \quad b=p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{\ell}^{y_{\ell}} r_{1}^{u_{1}} r_{2}^{u_{2}} \cdots r_{m}^{u_{m}}
$$

Note all proofs referenced in the textbook can also be found in the class notes. Study whichever is easier for you to understand.

- Section 4.3, Lemma 1
- Section 4.3, Lemma 2
- Section 4.3, Theorem 3
- Section 4.3, Theorem 7
- Section 4.4, Theorem 1 (In class, we also mentioned but did not prove the inverse is true as well. Figure out the proof, as it may be assigned on this exam or in the future.)
- Section 4.4, Theorem 2 (Chinese Remainder Theorem The book only proves the existence part. Remember we also did the uniqueness part in class.)
- $g c d(a, b)=p_{1}^{\min \left(x_{1}, y_{1}\right)} p_{2}^{\min \left(x_{2}, y_{2}\right)} \cdots p_{\ell}^{\min \left(x_{\ell}, y_{\ell}\right)}$
- $\operatorname{lcm}(a, b)=p_{1}^{\max \left(x_{1}, y_{1}\right)} p_{2}^{\max \left(x_{2}, y_{2}\right)} \cdots p_{\ell}^{\max \left(x_{\ell}, y_{\ell}\right)} q_{1}^{z_{1}} q_{2}^{z_{2}} \cdots q_{n}^{z_{n}} r_{1}^{u_{1}} r_{2}^{u_{2}} \cdots r_{m}^{u_{m}}$
- $\operatorname{gcd}(a, b) l c m(a, b)=a b$
- Given distinct primes $r_{1}, r_{2}, \cdots, r_{\alpha}, m, \beta_{1}, \beta_{2}, \cdots, \beta_{\alpha} \in \mathbb{Z}^{+}$, and $r_{i}^{\beta_{i}} \mid m \forall 1 \leq i \leq \alpha$, then we have $r_{1}^{\beta_{1}} r_{2}^{\beta_{2}} \cdots r_{\alpha}^{\beta_{\alpha}} \mid m$ (This was done in class on Thursday, June 6)
- $a^{p-1} \equiv 1 \bmod p$ when $a \nmid p$ and always $a^{p} \equiv a \bmod p($ Fermat's Little Theorem)

Also know the exponent and logarithm rules, as certain problems on the exam will defintely require some of these!

