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1. (15 points) Let p, q, r be propositions. Use a truth table to determine whether
p → (q → r) is logically equivalent to each of the following:

• (p → q) → r

• q → (¬p ∨ r)

Be sure to explain what parts of the truth table justifies your claims.

Solution: We write out the truth table, considering all possible values of the independent
Boolean variables p, q, and r. For brevity, we include all relevant entries for both parts,

p q r p → q (p → q) → r q → r p → (q → r) ¬p ¬p ∨ r q → (¬p ∨ r)

T T T T T T T T T T
T T F T F F F F F F
T F T F T T T F T T
F T T T T T T T T T
F F T T T T T T T T
F T F T F F T T T T
T F F F T T T F F T
F F F T F T T T T T

Due to the red values in the columns for (p → q) → r and p → (q → r), we see these two
propositions are NOT logically equivalent (since they take different truth values in some
cases). As the columns for p → (q → r) and q → (¬p ∨ r) have the same truth values in all
cases, we conclude these two propositions are logically equivalent.



Midterm Exam 1 Practice, Math 150 Thursday, May 30, 2024 Page 3 of 10

2. (20 points) Determine the truth value of each of the following propositions, when the
universes of discourse under consideration for each part are as written below (consider each
case separately).

(a) (∃x)
(
x2 − 1

3
= 0

)
for Case 1: x ∈ R and Case 2: x ∈ Q.

Solution: Case 1: Let x = 1/
√
3. Since this is a real number, the statement is true.

Case 2: The statement is false. BWOC say we can find a solution x = a ∈ Q to the
equation. Then we solve to get a = ±1/

√
3. By definition of Q, ∃ c, d ∈ Z and d ̸= 0 such

that 1/
√
3 = c/d. We consider two cases.

Case 1: c = 0. Then 1/
√
3 = 0, which is a contradiction.

Case 2: c ̸= 0. Then
√
3 = d/c ∈ Q by definition. Recall from class that

√
n is either

an integer or irrational. Since it is not an integer, we have
√
3 is irrational, giving us our

contradiction.
Hence there is no rational solution to x2 − 1/3 = 0.

(b) (∀x)
(
x > x− 5

6

)
for Case 1: x ∈ R and Case 2: x ∈ Q and Case 3: x ∈ Z.

Solution: Case 1: The statement is clearly true by basic algebra. If a universal quantifier is
always true for a given domain, it certainly remains true when we shrink the domain (if the
equation holds for every x ∈ R, it has to hold for every x ∈ Q and x ∈ Z, as Z ⊂ Q ⊂ R).
Hence Cases 2 and 3 are also true.

(c) (∀x)(∃y)
(

x
y
=

√
x
)
for Case 1: x, y ∈ R+ and Case 2: x, y ∈ Z+.

Solution: Case 1: The statement is true. Given any x ∈ R+, let y =
√
x (which is a real

number since x > 0). Observe that x/
√
x =

√
x.

Case 2: The statement is false. Recall ¬(∀x)(∃y)P (x, y) ≡ (∃x)(∀y)¬P (x, y). So let x = 2.
Setting 2/y =

√
2, we solve for y = 2/

√
2 =

√
2. Clearly

√
2 ̸∈ Z+, justifying our claim.

(d) (∃y)(∀x)
(

x
y
=

√
x
)
for Case 1: x, y ∈ R+ and Case 2: x, y ∈ Z+.

Solution. Case 1: The statement is false. To see this, rewrite the equation as y =
√
x and

observe that clearly a fixed y value will not work for every single x ∈ R+.
Case 2: The statement is false. One way to see this is to use the same argument as in Case
1, since it is clear that no fixed y ∈ Z+ will equal

√
x for every single x ∈ Z+. Alternatively,
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recall that (∃y)(∀x)P (x, y) =⇒ (∀x)(∃y)P (x, y). Taking the contrapositive, we find that
¬((∀x)(∃y)P (x, y)) =⇒ ¬((∃y)(∀x)P (x, y)). Since we saw in part (c) that this hypothesis is
true when x, y ∈ Z+, it follows that part (d) is false (since its negation is true).
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Some Proofs to Practice

1. Show that if x, y ∈ Z, xy is even, and x+ y is even, then both x and y are even.

2. Prove that if a, b ∈ R and a ̸= 0, then ∃!r ∈ R such that ar + b = 0.

3. Show ̸ ∃ x, y ∈ Z+ (there does not exist a positive integral solution) to the equation
x2 + y4 = 100.

4. Show ∀n ∈ Z that n is even ↔ n3 + 3 is odd.

5. Prove that if n is an integer, these four statements are equivalent:

(a) n is even

(b) n+ 1 is odd

(c) 3n+ 1 is odd

(d) 3n is even

Solution: Proof 1 is Example 7 in Section 1.8 of the book. Proof 2 is Example 13 in Section
1.8 of the book.

Proof of 3. BWOC say ∃ x, y ∈ Z satisfying x2 + y4 = 100. Since both summands are
positive due to the even exponents, we must have x2 ≤ 100 and y4 ≤ 100. Hence the only
possibilities are |x| ≤ 4 and |y| ≤ 3. While this technically gives us nine cases to check, we
actually only have to check the following four,

Case 1: x = 4 and y = 3. Then we get 43 + 34 = 145.

Case 2: x = 4 and y = 2. Then we get 43 + 24 = 80.

Case 3: x = 3 and y = 3. Then we get 33 + 34 = 108.

Case 4: x = 2 and y = 3. Then we get 23 + 34 = 89.

We are actually done at this point because any x, y pair where y < 2 will give a number
smaller than in Case 2, which is already too small. Similarly, any x, y pair where x < 2 will
give a number smaller than in Case 4, which is too small.

Proof of 4. (=⇒) Assume n is even. By definition, n = 2k for some k ∈ Z. Notice that

n3 + 3 = (2k)3 + 3 = 8k3 + 2 + 1 = 2(4k3 + 1) + 1.
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Since (4k3 + 1) ∈ Z, by definition n3 + 3 is odd.

(⇐=) We prove the contrapositive (note a direct proof would be very difficult). So
suppose n is odd. By definition, n = 2k + 1 for some k ∈ Z. We compute

n3 + 3 = (2k + 1)3 + 3 = 8k3 + 4k2 + 2k + 1 + 3 = 2(4k3 + 2k2 + k + 2).

Since 4k3+2k2+k+2 is an integer, by definition n3+3 is even. This finishes the proof.

Proof of 5. We need to show the following chain of equivalences,

(a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (a).

(a) =⇒ (b). Assume n is even. By definition, n = 2k for some k ∈ Z. Observe that
n+ 1 = 2k + 1. By definition, n+ 1 is odd.

(b) =⇒ (c). Suppose n+1 is odd. By definition, n+1 = 2k+1 for some k ∈ Z. Equivalently,
n = 2k. So 3n+ 1 = 3(2k) + 1 = 2(3k) + 1. As 3k ∈ Z, by definition 3n+ 1 is odd.

(c) =⇒ (d). Assume 3n+ 1 is odd. By definition, 3n+ 1 = 2k + 1 for some k ∈ Z. Equiva-
lently, 3n = 2k. Hence 3n is even by definition.

(d) =⇒ (a). We prove the contrapositive (note a direct proof would be very difficult). So
assume n is odd. By definition, n = 2k + 1 for some k ∈ Z. We compute 3n = 3(2k + 1) =
6k+3 = 2(3k+1)+1. Since 3k+1 ∈ Z, by definition 3n is odd. This finishes the proof.
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4. Prove or disprove the following set identities,

• (A ∪B ∪ C)− (A ∩B ∩ C) = A ∩B ∩ C − A ∪B ∪ C

• A− (B ∪ C) = ∅

• Redo the previous part with the added assumption that A ⊆ B ∪ C.

Solution: Recall set identities can be easily checked by drawing out the Venn Diagram.
One can check (DO make sure you can make these diagrams on your own)

Hence we see the first identity is true, the second is false in general but true in the case
A ⊆ B ∪C. Now we need to create the precise arguments. Recall there are three main ways
to prove set identities. The simplest is the following,

Proof of the first identity. Note that

x ∈ (A ∪B ∪ C)− (A ∩B ∩ C) ⇐⇒ (x ∈ A ∪B ∪ C) ∧ (x ̸∈ A ∩B ∩ C)

⇐⇒ (x ̸∈ A ∪B ∪ C) ∧ (x ∈ A ∩B ∩ C)

⇐⇒ x ∈ A ∩B ∩ C − A ∪B ∪ C.

To disprove the second identity, we need an explicit counterexample. The middle Venn
Diagram tells us any A ̸⊆ B ∪ C will do the trick. So let A = {1, 2}, B = {3, 4} and
C = {5, 6}. In this case, A− (B ∪ C) = A ̸= ∅ since A and B ∪ C are disjoint.
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Switching to the third item (or the third Venn Diagram), note proving a set is empty
requires contradiction, so that we can pick an x in our set and apply the proof techniques
we learned.

Proof of the third identity. BWOC say ∃ x ∈ A − (B ∪ C). By definition, x ∈ A and
x ̸∈ B ∪ C. Since A ⊆ B ∪ C, we have x ∈ A implies x ∈ B ∪ C. This gives us our
contradiction.
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5. NO JUSTIFICATION NEEDED ON ANY PART

(a) Determine whether each of the following statements is true or false, where A is any set.

• A ∈ A False

• A ⊆ A True

• A ⊂ A False

• A ∈ {A} True

• A ⊆ {A} False

• {A} ∈ {{1, 2, {A}}} False because the right side contains the single element {1, 2, {A}}

• {{A}} ∈ {1, 2, {A}} False because the right set contains the elements 1, 2, and {A}.
None of these equals {{A}}.

• {{A}} ⊂ {1, 2, {A, 4}} False because the right set contains the elements 1, 2, and
{4, A}. None of these equals {{A}}.

(b) Determine the cardinality of each of the following sets (the answer might be ∞).

• {A, {A}, {A, {A}}} whereA is any set 3 because the elements areA, {A}, and {A, {A}}.

• {0, ∅,C} 3 because the elements are 0, ∅,C.

• P({0, ∅}) |{0, ∅}| = 2. Hence |P({0, ∅}| = 22 = 4.

(c) Finish the sentence below by giving the appropriate logical definition (i.e. find a condi-
tion on each set element equivalent to the given condition on the sets and then express this
symbolically with the appropriate quantifiers and predicates),

The set A is a subset of set B if and only if
Solution: (∀x ∈ A)(x ∈ B). Also correct: (x ∈ A) → (x ∈ B).
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(d) Let A = {1, 2, 3, {1, 2, 3}}, B = {4, 5, 6, {1, 2}, 1}, and the universal set be given by
U = {1, 2, 3, 4, 5, 6, {1, 2, 3}, {1, 2}, {1, 2, 3, {4, 5, 6}}}. Find

• A ∪B
Solution: A ∪B = {1, 2, 3, {1, 2, 3}, 4, 5, 6, {1, 2}}.

• A ∩B
Solution: A ∩B = {1}, as this is the only element they have in common.

• A−B
Solution: A−B = {2, 3, {1, 2, 3}} (we removed 1 = A ∩B).

• B − A
Solution: B − A = {4, 5, 6, {1, 2}} (we removed 1 = A ∩B)

• A ∩B
Solution: A ∩B = U−(A∩B) = U−{1} = {2, 3, 4, 5, 6, {1, 2, 3}, {1, 2}, {1, 2, 3, {4, 5, 6}}}


