Workshop 8: Functions as Power Series

Warmup:

1. For each of the following functions, write down the domain, then make a (rough) sketch of the function:
(a) $\arctan (x)$
(b) $2 \cos (x+1)$
(c) $\ln (x+1)$
(d) $\frac{1}{x-1}$
2. We will need to differentiate and integrate series. Find the following:
(a) $\frac{d}{d x}\left(\sum_{n=0}^{\infty}(-1)^{n-1} 3^{n+1} 5 x^{n}\right)$
(b) $\int \sum_{n=0}^{\infty}(-1)^{n-1} 3^{n+1} 5 x^{n} d x$
3. Recall that differentiating and integrating a series does not affect the radius of convergence, but it can affect the interval of convergence. Find the radius and interval of convergence of

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n^{2}}
$$

Then take its derivative and find the interval of convergence of the result.

Problems: For each of the functions below, find a power series to represent it and its radius of convergence.

1. $f(x)=\frac{x^{2}}{3-2 x}$
2. $g(t)=\ln (2+t)$
3. $h(z)=\arctan (z)$ (Work this one out even if you already know the answer.
4. $r(x)=10 x^{3} \arctan (2 x)$ (Use (3).)
5. $f(x)=\frac{1}{(2-3 x)^{2}}$

For each, sketch the interval of convergence on the number line. What is the domain of the function? How do these relate?

