Test for Divergence If $\lim_{n\to\infty} a_n$ is not equal to zero, then $\sum a_n$ diverges.

Geometric Series Test The geometric series $\sum ar^n$ is absolutely convergent if |r| < 1 and divergent if $|r| \ge 1$.

Telescoping Series Test A telescoping series converges if and only if the sequence of its partial sums converges.

- **Integral Test** If f is a continuous, positive, decreasing function and $f(n) = a_n$ then $\sum a_n$ converges if and only if $\int_{-\infty}^{\infty} f(x) dx$ converges.
- **The P-Test** The series $\sum \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$.
- **Comparison Test** Suppose $0 < a_n < b_n$ for all n. If $\sum b_n$ converges then so does $\sum a_n$. If $\sum a_n$ diverges then so does $\sum b_n$.
- **Limit Comparison Test** If $a_n, b_n > 0$ and $\lim_{n \to \infty} \frac{a_n}{b_n}$ is a nonzero constant then $\sum a_n$ converges if and only if $\sum b_n$ converges.
- Alternating Series Test Suppose $\sum_{n \to \infty} (-1)^n a_n$ is an alternating series with $a_n > 0$. If $\lim_{n \to \infty} a_n = 0$ and $a_n > a_{n+1}$ for all n, then the series converges.
- **Ratio Test** Suppose $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho$. Then the series $\sum a_n$ converges absolutely if $\rho < 1$ and diverges if $\rho > 1$. If $\rho = 1$ the test is inconclusive.
- **Root Test** Suppose $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \rho$. Then the series $\sum a_n$ converges absolutely if $\rho < 1$ and diverges if $\rho > 1$. If $\rho = 1$ the test is inconclusive.

Absolute Convergence Theorem If $\sum |a_n|$ converges, then so does $\sum a_n$.