$MnH1$ 143 $N_{\rm t}$ $N_{\rm t}$ or $N_{\rm t}$ differentiation

^q series

goal: get power series expansions for as many functions as possible.

Taylor series

 Q . If $f(x)$ has a power series expansion about $x = a$ $C_0 + C_1 (x-a) + C_2 (x-a)^2$ r Cz(X-a \int ³ + C₄(x-a)⁷ on $|x-a|$ <R, what must the coefficients be in tenns of $f(x)$ and a? $A. \bigoplus f(a) = C_0 + C_1 \bigotimes f + C_2 \bigotimes f + C_3 \bigotimes f + \cdots$ o $\frac{c}{\theta} = f(a)$ \bigodot f'(x) = 0 + C₁ + 2C₂(x-a) + 3c₃(x-a)² + 4C₄(x-a)³+

$$
f'(a) = c_1 + 2c_2 \sqrt{1+3c_3} \sqrt[3]{1+4c_4} \sqrt[
$$

$$
f''(a) = 2c_2 + 2 \cdot 3 \cdot 5 \cdot 6 + 3 \cdot 4 \cdot 5 \cdot 6^2 + \cdots
$$

$$
C_2 = f''(a)
$$

 \circledS

(4) $f'''(x) = 0 + 1.3 \cdot C_3 + 1.3 \cdot 4 \cdot C_4(x-a) + 3.4 \cdot 5 \cdot C_5(x-a)^2 + ...$

$$
f'''(\alpha) = 3! \, c_3
$$
\n
$$
c_3 = \frac{f^{(3)}(\alpha)}{3!}
$$
\n
$$
f^{(4)}(\alpha) = n^{44} \, \text{density of } f
$$

$$
\oint^{(n)}(a) = 2.3.4 \cdots n \cdot C_n = \frac{n! C_n = f^{(n)}(a)}{n!}
$$

\n
$$
\Rightarrow C_n = \frac{f^{(n)}(a)}{n!}
$$

Thm. If $f(x)$ has a power series expansion about $x = \infty$, e^{i} f(x)= $\sum_{n=0}^{\infty} C_n (x-a)^n$ for $|x-a| < R$ n=o

then the coefficients are given by
The formula
$$
C_n = \frac{f^{(n)}(a)}{n!}
$$
.

A.So the answer to our original guestion is:

If $f(x)$ has a power series expansion at $x = a$ then

if must be of the form
\n
$$
\int_{0}^{x} f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^{n}
$$
\n
$$
= \frac{f(a)}{0!} + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^{2}
$$
\n
$$
+ \frac{f'''(a)}{3!} (x-a)^{3} + \frac{f'''(a)}{4!} (x-a)^{4} + \cdots
$$

DEF. This power series expansion of
$$
f(x)
$$
 is called
the Taylor series of $f(x)$ at $x = n$.

DEF. The common case of a=0 is called the

Median	series	of	$\frac{1}{2}(x)$:
$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$			
$= f(0) + f'(0)x + f'(\frac{0}{2!})x^2 + f''(\frac{0}{3!})x^3 + ...$			
exf	Find the Maclaurin series for $f(x) = e^x$ and		
$f(x) = e^x$	$f(0) = 1$	$C_0 = 1/e^{-\frac{1}{2}t}$	
$f''(x) = e^x$	$f'(0) = 1$	$C_1 = 1/e^{-\frac{1}{2}t}$	
$f''(x) = e^x$	$f''(0) = 1$	$C_2 = 1/2$	
$f'''(x) = e^x$	$f'''(0) = 1$	$C_3 = 1/e^{-\frac{3}{2}t}$	
$C_n = \frac{1}{n}$	$C_n = \frac{1}{n}$		

So the Taylor series for
$$
f(x) = e^x
$$
 at $x = 0$ is
\n
$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + x + \frac{1}{2}x^2 + \frac{1}{3!}x^3 + \cdots
$$
\n
$$
= e^x
$$

Radius of convergence: (this is exe from the first day on power nofio $\frac{\frac{\text{Data}}{\text{Test}}}{\text{Test}} = \lim_{n \to \infty} \left| \frac{\alpha_{n+1}}{\alpha_n} \right| = \lim_{n \to \infty} \left| \frac{\chi^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right| = \lim_{n \to \infty} \left| \frac{x}{n+1} \right| = 0$ so \lfloor < 1 for all x-values so $\boxed{R = \omega \text{ and } \text{Foc} = (-\omega, \omega)}$

Notes:	① Test for DN. \Rightarrow $\lim_{h \to \infty} \frac{x^{h}}{h!} = 0$ for all x
So $n!$ "grows faster" than x^{n} for any X.	
② We also showed that $e^{1} = \sum_{h=0}^{\infty} \frac{1}{h!} 1^{h}$	
So $e = 2 + \frac{1}{2!} + \frac{1}{2!} + \frac{1}{4!} + ...$	
③ And, e.g., $\sum_{n=0}^{\infty} \frac{q^{n}}{1! \cdot n!} = \sum_{n=0}^{\infty} \frac{1}{h!} \left(\frac{q}{n}\right)^{n} = e^{\frac{2}{h!} \cdot \frac{1}{h!}}$	
This series converges, but what is the value of its sum? $e^{\frac{2}{h!}}$	

 $ex2$ Find the Taylor series expension for $f(x) = e^{2x}$ about x=-4 its radres of convergence:

$$
f(x) = e^{2x}
$$

\n
$$
f(-x) = 1 e^{-x}
$$

\n
$$
f(-x) = 1 e^{-x}
$$

\n
$$
f(-x) = 2 e^{-x}
$$
<

$$
= e^{-8} + 2e^{-8}(x+4) + 2e^{8}(x+4) + \frac{4}{3}e^{-8}(x+4) + \frac{4}{3}e^{-8}(
$$

Radius of convergence:															
\n $\frac{r_{\text{at}} - r_{\text{at}}}{r_{\text{at}} - r_{\text{at}}}$ \n	\n $\frac{r_{\text{at}} - r_{\text{at}}}{r_{\text{at}} - r_{\$														

$$
\exp\left\{\frac{e^{2x}}{\sqrt{1-x}}\right\} \text{ about } x=0.
$$

Les use known series:

$$
e^{u} = \sum_{n=0}^{\infty} \frac{u^{n}}{n!} \quad \text{for all } u
$$

$$
50 \quad e^{2x} = \sum_{n=0}^{\infty} \frac{(2x)^n}{n!} = \sum_{n=0}^{\infty} \frac{2^n}{n!} x^n \quad \text{for all } x
$$

 $ex4 \int x^2 e^{2x}$ about $x = 0$. $x^2 e^{2x} = x^2 \sum_{h=0}^{\infty} \frac{2^h}{h!} x^n = \sum_{h=0}^{\infty} \frac{2^h}{h!} x^{h+2}$ for all x $ex 5$ e^{x^2} about $x=0$: $\sum_{n=0}^{\infty} \frac{1}{n!} (x^2)^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^{2n}$ for

= $1 + x^2 + \frac{1}{2}x^4 + ...$