Math 143 - part 2

by Amanda Tucker

Alternating seves estimation theorem.

If $S = \sum_{n=0}^{\infty} (-1)^n a_n$ where $a_n > 0$ is the sum of a

Convergent alternating seves then

 $|R_n|=|S-S_n|\leq |S_{n+1}-S_n|=\alpha_{n+1}$ so $|R_n|\leq \alpha_{n+1}$

The nth remainder "the error"

 $R_{n} = Q_{n+1} - Q_{n+2} + Q_{n+3} - \cdots$ or $-Q_{n+1} + Q_{n+2} - Q_{n+3} + \cdots$

This says " the error in estimating the sum by a partial sum is < the next term"

A.
$$S_1 = \alpha_1$$
 $S_3 = \alpha_1 - \alpha_2 + \alpha_3$ $|R_3| = |S - S_3| \le |S_4 - S_3| = \alpha_4$

$$S_2 = \alpha_1 - \alpha_2$$

$$S_2 = \alpha_1 - \alpha_2$$

$$ex/\sum_{n=1}^{\infty}(-1)^{n-1}a_n=1-\frac{1}{10}+\frac{1}{100}-\frac{1}{1000}+\cdots=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{10^{n-1}}$$

1. How many terms must we add up to approximate 0.001 the sum of this convergent series?

A. We want
$$|R_n| \le .001 = \frac{1}{1000}$$
, so need $|R_n| \le |a_{n+1}| \le \frac{1}{1000}$

So use 3 terms!

$$S_3 = 1 - \frac{1}{10} + \frac{1}{100} = 1 - .1 + .01 = .91$$

and S = .91 with error = .001

Absolute convergence

DEF. A series 2a is called absolutely unvergent if Slan is convergent.

A series is called <u>conditionally</u> <u>convergent</u> if it is convergent but not absolutely convergent.

by AST SO () S(-1) an conv (by AST) (and o)
(2) Zan DIV

Absolute Convergence Theorem: If a series is absolutely convergent then it is convergent.

absolutely convergent series 2 h zarn for 11/21

conditionally invergent $2\frac{(-1)^{n-1}}{n}$ $2\frac{(-1)^{n-1}\ln(n)}{n}$

divergent series $\frac{1}{n}$

E hi for be, Earn for his.

ext/Q is
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{5^n}$$
 absolutely convergent? conditionally conv.?
Or divergent? [au]
A. first, consider $\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{5^n} \right| = \sum_{n=1}^{\infty} \left| \frac{(-1)^n}{5^n} \right|$

(New and improved) Geometric series test (GST) Zarn-1 converges absolutely if Irl < 1 and diverges if Irly 1.

ex2/Q. For what x is $\sum_{n=0}^{\infty} (-1)^n x$ absolutely convergent? Conditionally conv. ? threshert?

$$\Delta$$
. $|x| < 1 \Rightarrow abs. conv.$
 $|x| > 1 \Rightarrow abs. conv.$

thatlenge: why

we when $x = \pm 1$?

<u>note</u>: A geometrie series is never conditionally Convergent. ex 3/0.15 $\sum_{n=1}^{\infty} \frac{(-1)^n cos(n)}{n^2}$ absolutely convergent? conditionally conv.?

A. $\sum_{n=1}^{\infty} \frac{(-1)^n \omega_s(n)}{n^2}$ has both pos. 8 neg. terms, but it is not alternating, so AST Loesn't apply.

Still, $\frac{\infty}{N=1} \left| \frac{(-1)^n \cos(n)}{n^2} \right| = \sum_{N=1}^{\infty} \frac{|\cos(n)|}{n^2}$ and since $|\cos(n)| \le 1$,

 $0 \leqslant \frac{|\omega_s(n)|}{n^2} \leqslant \frac{1}{n^2}$, and $\lesssim \frac{1}{n^2}$ is a conv p-series (p=2>1).

So, by comparison test, $\sum \frac{|\cos(n)|}{n}$ is CONV as well

Thus $2 \frac{(-1)^n \cos(n)}{n^2}$ is absolutely convergent

 $0\times4\sqrt{0.15}$ $\sum_{n=1}^{\infty}\frac{(-1)^n}{n^n}$ absolutely convergent? conditionally conv.?

A. $\left| \frac{(-1)^n}{n^5} \right| = \frac{1}{n^5} \left| \frac{1}{n^5} \right| \cos v$. p-series so $\left| \frac{1}{n^5} \right| \cos v$.

$$ex4/0.1s = \frac{c}{2} \frac{(-1)^n}{\ln(n)}$$
 abs. conv.? cond. conv.? or div.?

A. O Consider
$$\sum_{n=2}^{\infty} \left| \frac{(-1)^n}{\ln(n)} \right| = \sum_{n=2}^{\infty} \frac{1}{\ln(n)}$$
, which is divergent by CT with $\sum_{n=2}^{\infty} \frac{1}{\ln(n)}$ by CT with $\sum_{n=2}^{\infty} \frac{1}{\ln(n)}$.

2) So we use
$$AST: \frac{1}{\ln(n)} > \frac{1}{\ln(n+1)}$$
 & $\lim_{n \to \infty} \frac{1}{\ln(n)} = 0$

so the externating series is conv. by AST

Is 2an ABS conv, LOND CONV, OR DIV?

TWO THINGS:

ZlanIDIV

2 an CONV by AST