$$
\frac{M_{\alpha}+h \quad 143 - part \quad 2}{b_{\gamma} \quad \text{Annuala} \quad \text{Turcav}}
$$

Alternatively, $S = \sum_{n=1}^{\infty} (-1)^n a_n$ there $a_n \ge 0$ is the sum of a												
If $S = \sum_{n=1}^{\infty} (-1)^n a_n$ there $a_n \ge 0$ is the sum of a												
$ R_n = S - S_n \le S_{n+1} - S_n = a_{n+1}$ so $\sqrt{ R_n } \le a_{n+1}$												
\int	The n^{th} remainder, "the error" is $\text{Bayes } \int R_n = a_{n+1} - a_{n+2} + a_{n+3} - \cdots$	This $\text{Bayes } \int R_n = a_{n+1} - a_{n+2} - a_{n+3} + \cdots$	This $\text{Bayes } \int R_n = a_{n+1} - a_{n+2} - a_{n+3} + \cdots$	Thus $\text{Bayes } \int R_n = a_{n+1} - a_{n+2} - a_{n+3} + \cdots$	Thus $\text{Rayes } \int R_n = a_{n+1} - a_{n+2} - a_{n+3} + \cdots$	Thus $\text{Rayles } \int R_n = a_{n+1} - a_{n+2} - a_{n+3} + \cdots$	Thus $\text{Rayles } \int R_n = a_{n+1} - a_{n+2} - a_{n+3} + \cdots$	Thus $\text{Rayles } \int R_n = a_{n+1} - a_{n+2} - a_{n+3} - \cdots$	Thus $\text{Rayles } \int R_n = a_{n+1} - a_{n+2} - a_{n+3} - \cdots$	Thus $\text{Rayles } \int R_n = a_{n+1} - a_{n+2} - a_{n+3} - \cdots$	Thus $\text{Rayles } \int R_n = a_{n+1} - a_{n+2} - a_{n+3} - \cdots$	Thus $\text{Rayles } \int R_n = a_{n+1} - a_{n+2} - a_{n+3} - \cdots$

$$
\frac{Q}{A} \cdot \frac{M_{1}^{2}}{A} \cdot \frac{\left|S_{1} = a_{1} S_{3} = a_{1} - a_{2} + a_{3} \right|}{\left|S_{1} = a_{1} S_{2} = a_{1} - a_{2} + a_{3} \right|} \cdot \frac{|R_{3}| = |S - S_{3}| \leq |S_{4} - S_{3}| = a_{4}}{S_{4}^{2} = a_{1} - a_{2} + a_{3} - a_{4}}
$$

$$
\exp\left(\sum_{n=1}^{\infty}(-1)^{n-1}a_n=-\frac{1}{10}+\frac{1}{100}-\frac{1}{1000}+\cdots=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{10^{n-1}}\right)
$$

- Q. How many terms must we add up to approximate 0.001 the sum of this convergent series? Within
- $A.$ We want $|R_n| \leq .001 = \frac{1}{1000}$, so need $|R_n| \leq |\alpha_{n+1}| \leq \frac{1}{1000}$

So use 3 terms!

$$
S_3 = 1 - \frac{1}{10} + \frac{1}{100} = 1 - .1 + .01 = .91
$$

and $S \approx .91$ with error $\leq .001$

Also lute convergence
DEF. A series Σa is called <u>absolutely</u> <u>imvergent</u> if
Σ lan Σ convergent.
A series is called <u>condithonally</u> <u>convergent</u> if it
is convergent but not absolutely convergent.
by As Σ so Σ (-1) ^h an conv (by As Σ) (a_{h20})
(2) Σa_n DW

$$
log 1/\frac{Q}{L} \text{ is } \sum_{n=1}^{\infty} \frac{(-1)^n}{5^n} \text{ absolutely convergent?} conditionally conv.?
$$

or divergent? $|a_n|$

$$
\frac{A}{2} \cdot \text{first, consider } \sum_{n=1}^{\infty} \left| \frac{(-1)^n}{5^n} \right| = \sum_{n=1}^{\infty} \frac{1}{5^n} \cdot \text{This is conv. by GST because } |r| = \frac{1}{5} < 1
$$

So $\sum \frac{(-1)^n}{5^n}$ is absolutely convergent.

(New and improved) Geometric series test (GST) $\sum_{n=1}^{\infty} ar^{n-1}$ concrete absolutely if $|r| \leq 1$ and dresses if $|r|$

$$
ex2/Q. For what x is $\sum_{n=0}^{\infty}(-1)^{n}x$ absolutely convergent ?
Conditionally conv ? through ?

A. $|x| < 1 \Rightarrow$ abs. conv.
 $|y| \ge 1 \Rightarrow$ lowerly thallenge: Why
the when x=±?
$$

note: A geometrie series is never conditionally Convergent.

Elan DIV 2 an CONV by AST