Math 143

Final

May 6, 2018

NAME (please print legibly):

Your University ID Number:

Circle your instructor’s name:

Yesim Demiroglu George Grell

• No calculators, notes, or other aids are allowed during this exam.

• Show all your work. You may use back pages if necessary. You may not receive full credit for a correct answer if there is no work shown.

• You are responsible for checking this exam has all 17 pages.

• If possible evaluate trigonometric and logarithmic expressions. Otherwise you do not need to simplify.

Please copy and sign the following statement.

I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

__

__

__

__

__

Signature: ________________________________
<table>
<thead>
<tr>
<th>QUESTION</th>
<th>VALUE</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QUESTION</th>
<th>VALUE</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>
Part A

1. (20 points) If a sequence below converges, find its limit, and justify by citing any theorems/rules you use. If a sequence below diverges, state whether it diverges because it oscillates, diverges to $+\infty$, or diverges to $-\infty$.

(a) $a_n = \frac{\ln n}{n}$

Let $f(x) = \frac{\ln x}{x}$. Then $\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{\frac{1}{x}}{1} = 0$, by L'Hopital's rule.

Hence $\lim_{n \to \infty} a_n = 0$, as $a_n = f(n)$.

(b) $a_n = (-1)^n n^3$

As $\lim_{n \to \infty} n^3 = \infty$, $\sum_{n=1}^{\infty} (-1)^n n^3$ diverges because it oscillates.
(c) $a_n = \frac{\cos n}{n}$

Since $-\frac{1}{n} \leq \frac{\cos n}{n} \leq \frac{1}{n}$ and $\lim_{n \to \infty} -\frac{1}{n} = \lim_{n \to \infty} \frac{1}{n} = 0$,

$\lim_{n \to \infty} \frac{\cos n}{n} = 0$ by the squeeze theorem.

(d) $a_n = \ln (3n^2 + 11) - \ln (5n^2 + 8n - 2)$

\[
a_n = \ln \left(\frac{3n^2 + 11}{5n^2 + 8n - 2} \right). \quad \text{Since} \quad \lim_{n \to \infty} \frac{3n^2 + 11}{5n^2 + 8n - 2} = \frac{3}{5},
\]

\[
\lim_{n \to \infty} \ln \left(\frac{3n^2 + 11}{5n^2 + 8n - 2} \right) = \ln \left(\frac{3}{5} \right).
\]
2. (14 points) Determine whether the following series converge or diverge. If a series converges, find its sum. Justify and show all your work.

(a) \[\sum_{n=1}^{\infty} \left(\frac{4}{5^n} + \frac{1}{3^n} \right) \]

Since \[\sum_{n=1}^{\infty} \frac{4}{5^n} \text{ and } \sum_{n=1}^{\infty} \frac{1}{3^n} \text{ are convergent geometric series}, \]
its sum is \[\frac{\frac{4}{5}}{1 - \frac{1}{5}} = 1. \] Since \[\sum_{n=1}^{\infty} \frac{1}{3^n} = \frac{1}{3} + \frac{1}{9} + \cdots, \] its sum is \[\frac{1}{3} \cdot \frac{1}{1 - \frac{1}{3}} = \frac{1}{2}. \] Hence \[\sum_{n=1}^{\infty} \frac{4}{5^n} + \frac{1}{3^n} = 1 + \frac{1}{2}. \]

(b) \[\sum_{n=2}^{\infty} \frac{2}{n^2 - 1} \]

Since \[\frac{2}{n^2 - 1} = \frac{1}{n-1} - \frac{1}{n+1}, \] this series telescopes.

\[S_n = (1 - \frac{1}{3}) + \left(\frac{1}{2} - \frac{1}{4} \right) + \left(\frac{1}{3} - \frac{1}{5} \right) + \left(\frac{1}{4} - \frac{1}{6} \right) + \cdots + \left(\frac{1}{n-2} - \frac{1}{n} \right) \]

\[+ \left(\frac{1}{n-1} - \frac{1}{n+1} \right) = 1 + \frac{1}{2} - \frac{1}{n} - \frac{1}{n+1}. \]

Since \[\lim_{n \to \infty} S_n = 1 + \frac{1}{2}, \] the series converges, and its sum is \[\frac{3}{2}. \]
\[\sum_{n=1}^{\infty} \frac{(4)^n}{(3^n)} \]

is a geometric series with common ratio \(r = \frac{3}{4} < 1 \); it always converges, and since \(\lim_{n \to \infty} \frac{4^n}{3^n} = 4 \), we have that \(\frac{n+5}{4^n} \to 0 \).

Further, note that these series converge, and since \(e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \), we see that it is decreasing, note that \(\frac{e^x}{x^2} \).

Let \(f(x) = \frac{e^x}{x^2} \).

See that \(\frac{e^x}{x^2} = \frac{x e^x}{x^2} = \frac{e^x}{x} = e^x \).

Clearly \(f(x) \) is positive on \([1, \infty)\).

To tests you use, and justifying their use completely:

3. (15 points) Determine whether the following series converge or diverge, naming any tests you use, and justifying their use completely.
(c) \[\sum_{n=2}^{\infty} \frac{1}{n \ln(n)} \]

Let \(f(x) = \frac{1}{x \ln(x)} \). For \(x \geq 2 \), \(\frac{1}{x \ln(x)} > 0 \).

\[f'(x) = \frac{-(1+\ln(x))}{(x \ln(x))^2} \leq 0 \quad \text{so} \quad f \text{ is decreasing.} \]

\[\int_{2}^{\infty} \frac{1}{x \ln(x)} \, dx = \lim_{t \to \infty} \ln(\ln(x)) \bigg|_{2}^{t} = \lim_{t \to \infty} \ln(\ln(t)) - \ln(\ln(2)) = \infty. \]

(Using \(u = \ln(x) \))

Hence the integral diverges, so the series also diverges by the integral test.
4. (14 points) Find a power series expansion of the function

\[f(x) = x \ln(1 - 5x^2). \]

Write the first five non-zero terms, or express in sigma (\(\Sigma\)) notation. What is the radius of convergence?

\[
\ln(1 + x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n
\]

\[
x \ln(1 - 5x^2) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} (-5x^2)^n}{n} (x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} 5^n x^{2n+1}}{n}
\]

\[= \sum_{n=1}^{\infty} \frac{-5^n x^{2n+1}}{n} \quad \text{as} \quad (-1)^{2n-1} = -1 \]

Using the root test

\[
\lim_{n \to \infty} \left| \frac{-5^n x^{2n+1}}{n} \right|^{1/n} = |5x^2|.\text{ Set } |5x^2| < 1, \text{ we get } |x| < \frac{1}{\sqrt{5}}.
\]

\[\text{So the radius of convergence is } R = \frac{1}{\sqrt{5}}\]

\[
|X| < \frac{1}{\sqrt{5}}. \text{ So the radius of convergence is } R = \frac{1}{\sqrt{5}}.
\]

When \(x = \frac{1}{\sqrt{5}} \),

\[
\sum_{n=1}^{\infty} \frac{-5^n x^{2n+1}}{n} = \sum_{n=1}^{\infty} \frac{-1}{\sqrt{5} n}, \text{ which diverges, because it is equal to } \frac{-1}{\sqrt{5}} \sum_{n=1}^{\infty} \frac{1}{n} \text{, and } \sum_{n=1}^{\infty} \frac{1}{n}
\]

is the harmonic series. Similarly, the series diverges.

When \(x = -\frac{1}{\sqrt{5}} \), in neither case do we get an alternating series. So the IOC is \((-\frac{1}{\sqrt{5}}, \frac{1}{\sqrt{5}})\).

The interval of convergence is not asked for, but here it is.
5. (15 points) Find the Taylor series for \(f(x) = \frac{1}{x} \) around \(a = 4 \) using the definition of a Taylor series. What is the radius of convergence?

\[
f(x) = \frac{1}{x}
\]

\[
f'(x) = -\frac{1}{x^2} \quad f'(4) = -\frac{1}{16}
\]

\[
f''(x) = 2x^{-3} \quad f''(4) = \frac{2}{4^3}
\]

\[
f'''(x) = -6x^{-4} \quad f'''(4) = -\frac{6}{4^4}
\]

\[\vdots\]

\[
f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} (x-4)^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{4^{n+1}} (x-4)^n
\]

Using the ratio test:

\[
\lim_{n \to \infty} \left| \frac{(x-4)^{n+1}}{4^{n+2}} \cdot \frac{4^{n+1}}{(x-4)^n} \right| = \lim_{n \to \infty} \left| \frac{x-4}{4} \right| < 1
\]

\[|x-4| < 4, \text{ so } R = 4.
\]
6. (12 points) Find the radius and interval of convergence of the power series below.

(a) \[\lim_{n \to \infty} \left| \frac{7^n (x-4)^{2n+1}}{(n+1)(2n+3)!} \right| = \lim_{n \to \infty} \left| \frac{7^n (x-4)^{2n+1}}{7^n(x-4)^{2n+1}} \right| = \lim_{n \to \infty} \left| \frac{7(x-4)^2}{(2n+1)(2n+2)} \right| = 0. \] So \(R = \infty \), \(\text{IOC} = (-\infty, \infty) \).

(b) \[\lim_{n \to \infty} \left| \frac{(n+1)!}{5^n \sqrt{n+4}} \right| = \lim_{n \to \infty} \sqrt{\frac{n+1}{5^n}} \left(\frac{3x+2}{n!(3x+2)^n} \right) \left(\sqrt{n+3} \right) = \lim_{n \to \infty} \sqrt{n+3} \left(\frac{n+1}{5^n} \right) |3x+2| = \infty. \] So \(R = 0 \), \(\text{IOC} = \frac{5-2}{3} \).
Part B

7. (15 points) Consider the parametric curve defined by \(x = t^4 + 1, y = t^3 - t. \)

(a) Find \(dy/dx. \) For what values of \(t \) is the tangent line vertical or horizontal?

\[
\frac{dy}{dt} = 3t^2 - 1 \quad \rightarrow \quad \frac{dy}{dx} = \frac{3t^2 - 1}{4t^3}
\]

\[
\frac{dx}{dt} = 4t^3
\]

\[
\frac{dy}{dx} = 0 \quad \text{if} \quad t = \pm \sqrt[3]{\frac{1}{3}} \quad \text{so the tangent line is horizontal}
\]

The tangent line is vertical when \(t = 0. \)

(b) At the point \((2, 0)\) the curve has two different tangent lines. Find both tangent lines at that point.

\[
x = 2, \quad y = 0 \quad \text{at} \quad t = 1 \quad \text{and} \quad t = -1
\]

If \(t = 1, \) \(\frac{dy}{dx} = \frac{1}{2}, \) so the line is \(y = \frac{1}{2}(x - 2) \)

If \(t = -1, \) \(\frac{dy}{dx} = -\frac{1}{2}, \) so the line is \(y = -\frac{1}{2}(x - 2) \)
(c) Determine the intervals (in t) where the curve is concave up, and where it is concave down.

\[
\frac{d^2y}{dx^2} = \frac{d}{dt} \left(\frac{dy}{dx} \right) = -\frac{6t^4 + 12t^2}{64t^7} = \frac{6 - 3t^2}{32t^5}
\]

Changes in concavity occur at $t = 0, t = \pm \sqrt{2}$.

<table>
<thead>
<tr>
<th>t</th>
<th>$6 - 3t^2$</th>
<th>t^5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-\sqrt{2}$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>0</td>
<td>$+$</td>
<td>$+$</td>
</tr>
<tr>
<td>$\sqrt{2}$</td>
<td>$+$</td>
<td>$+$</td>
</tr>
</tbody>
</table>

Concave up: $(-\infty, -\sqrt{2}) \cup (0, \sqrt{2})$

Concave down: $(-\sqrt{2}, 0) \cup (\sqrt{2}, \infty)$
8. (12 points) Consider the parametric curve defined by \(x = t - 2\sin(t), y = 1 - 2\cos(t) \) on the interval \(\pi/2 \leq t \leq 3\pi/2 \).

(a) Find the area underneath the curve on the given interval.

Since \(\frac{dx}{dt} = 1 - 2\cos t \) and \(\cos t \leq 0 \) in quadrants 2 and 3, \(\frac{dx}{dt} < 0 \). Hence the curve moves from left to right and so

\[
A = \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} (1 - 2\cos t)(1 - 2\cos t) \, dt
\]

\[
= \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} (1 - 4\cos t + 4\cos^2 t) \, dt
\]

\[
= \left[t - 4\sin t + \frac{4}{2} \left(\frac{t}{2} + \frac{\sin^2 t}{4} \right) \right]_{\frac{\pi}{2}}^{\frac{3\pi}{2}}
\]

\[
= \frac{3\pi}{2} - 4 - \left(\frac{3\pi}{2} - 4 \right) = 8 + \frac{6\pi}{2} = 8 + 3\pi
\]

(b) Set up, but DO NOT EVALUATE an integral that gives the arc length of the curve on the given interval.

We know the curve does not cross itself, because \(\frac{dy}{dt} > 0 \).

\[
\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \sqrt{(1 - 2\cos t)^2 + (2\sin t)^2} \, dt
\]
9. (16 points)

(a) Convert the polar coordinates \((-3, \pi/3)\) and \((2, -\pi/6)\) to Cartesian coordinates.

\[
x = r \cos \theta, \quad y = r \sin \theta
\]

\[
\left(r, \theta \right) = \left(-3, \frac{\pi}{3} \right)
\]

corresponds to

\[
\left(-3 \left(\frac{1}{2} \right), -3 \left(\frac{\sqrt{3}}{2} \right) \right) = (x, y)
\]

\[
\left(r, \theta \right) = \left(2, -\frac{\pi}{6} \right)
\]

\[
\left(2 \left(\frac{\sqrt{3}}{2} \right), 2 \left(-\frac{1}{2} \right) \right) = (\sqrt{3}, -1) = (x, y)
\]

(b) Convert the Cartesian coordinates \((1, \sqrt{3})\) and \((-2, 2)\) to polar coordinates. Make sure
\(r \geq 0\) and \(0 \leq \theta < 2\pi\).

\[
(1, \sqrt{3})
\]

\[
\sqrt{3} = \frac{\sqrt{3}}{x} = \tan \theta
\]

so \(\theta = \frac{\pi}{3}\)

\[
x^2 + y^2 = 1 + 3 = 4 = r^2
\]

polar point:

\[
\left(\sqrt{3}, \frac{\pi}{3} \right)
\]

\[
(-2, 2)
\]

\[
tan \theta = -1, \quad \text{so} \quad \theta = \frac{3\pi}{4} \text{ or } \frac{7\pi}{4}
\]

since \(x < 0, y > 0\), we read

\(\theta = \frac{3\pi}{4}\).

\[
x^2 + y^2 = 8, \quad \text{so} \quad r = 2\sqrt{2}
\]

\[
(2\sqrt{2}, \frac{3\pi}{4})
\]
10. (12 points) Consider the polar curve $r = 1 + 2 \cos(\theta)$

(a) Sketch the curve on the provided graph.

(b) For what values of θ does the curve cross itself?

\begin{align*}
\text{(b) The curve crosses itself when } & 1 + 2 \cos(\theta) = 0, \text{ or} \\
\theta &= \frac{2\pi}{3}, \frac{5\pi}{3} \text{ or } \end{align*}
11. (15 points) Find the area inside the polar curve \(r = 3 + \cos 4\theta \). A plot is given below for reference.

\[
\begin{align*}
A &= 8 \int_0^{\pi/4} \frac{(3 + \cos 4\theta)^2}{2} \, d\theta \\
&= 4 \int_0^{\pi/4} 9 + 6 \cos 4\theta + \cos^2(4\theta) \, d\theta \\
&= 4 \int_0^{\pi/4} 9 + 6 \cos 4\theta + \frac{1 + \cos 8\theta}{2} \, d\theta \\
&= 4 \int_0^{\pi/4} 9.5 + 6 \cos 4\theta + \frac{\cos 8\theta}{2} \, d\theta \\
&= 4 \left[9.5\theta + \frac{6\sin 4\theta}{4} + \frac{\sin 8\theta}{16} \right]_0^{\pi/4} \\
&= (9.5)(\pi/4)(4) = 9.5\pi
\end{align*}
\]