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1. (10 points) Determine whether the following series converges absolutely, converges only

conditionally, or diverges. Name any test you use.

∞∑
n=1

2n cos(n)

n3 + 7

As

|2n cos(n)

n3 + 7
| ≤ 2n

n3 + 7
≤ 2

n2
,

and
∑∞

n=1
1
n2 converges by p-test, we see that

∞∑
n=1

2

n2
= 2

∞∑
n=1

1

n2

converges which implies by CT that
∑∞

n=1
2n cos(n)
n3+7

converges absolutely.
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2. (10 points) Determine whether the following series converges absolutely, converges only

conditionally, or diverges. Name any test you use.

∞∑
n=1

(−1)n
√
n

n+ 10

√
n

n+10
is positive, decreasing to 0. Hence, by AST,

∑∞
n=1

(−1)n
√
n

n+10
converges. But limn→∞

(
√

n
n+10

)

( 1√
n
)

=

limn→∞
n

n+10
= 1 so that as

∑∞
n=1

1√
n

= +∞ by p-test,
∑∞

n=1

√
n

n+10
=

∑∞
n=1|

(−1)n
√
n

n+10
| also di-

verges by LCT. Thus, conditional convergence.
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3. (20 points) Find the radius and interval of convergence of the power series

∞∑
n=1

(−3)n(x+ 1)n

2n
√
n

.

lim
n→∞
|(−3)n+1(x+ 1)n+1

2n+1
√
n+ 1

2n
√
n

(−3)n(x+ 1)n
| = |x+ 1| lim

n→∞

3

2

√
n√

n+ 1
= |x+ 1|3

2
< 1 if |x+ 1| < 2

3
.

Hence, ROC is 2
3
. From (−5

3
,−1

3
), we check that if x = −5

3
, then

∑∞
n=1

(−3)n(− 2
3
)n

2n
√
n

=
∑∞

n=1
1√
n

diverges by p-test, whereas if x = −1
3
, then

∑∞
n=1

(−3)n( 2
3
)n

2n
√
n

=
∑∞

n=1
(−1)n√

n
converges by AST

as 1√
n

is positive, and decreasing to 0. Thus, IOC is (−5
3
,−1

3
].
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4. (20 points) Consider the function f(x) = e−x.

(a) Find a power series expansion of f(x) about x = −4. Write out the first three nonzero

terms, and express the series in sigma notation.

c0 =
e4

0!
,

c1 =
−e4

1!
,

c2 =
e4

2!

from which we see that cn = (−1)ne4
n!

. Thus,

e−x =
∞∑
n=0

(−1)ne4

n!
(x+ 4)n

=e4 − e4(x+ 4) +
e4

2
(x+ 4)2 − . . .

(b) Use the ratio test to find the radius and interval of convergence of the series you found

in (a). No credit will be given for solutions not using the ratio test.

lim
n→∞
|(−1)n+1e4(x+ 4)n+1

(n+ 1)!

n!

(−1)ne4(x+ 4)n
| = |x+ 4| lim

n→∞

1

n+ 1
= 0

and thus ROC is +∞ while IOC is (−∞,∞).
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5. (20 points)

(a) Find the Maclaurin series expansion of the function

f(x) =
x2 − sin(x2)

x6
.

Write out the first four nonzero terms, and express the series in sigma notation.

f(x) =
x2 − sin(x2)

x6

=
x2 −

∑∞
n=0

(−1)n(x2)2n+1

(2n+1)!

x6

=
∞∑
n=1

(−1)n+1x4n−4

(2n+ 1)!

=
(−1)2x0

3!
+

(−1)3x4

5!
+

(−1)4x8

7!
+

(−1)5x12

9!
+ . . .

(b) What is the value of f (12)(0)?

As f (12)(0)
12!

x12 = (−1)5x12

9!
, we have f (12)(0) = (−1)512!

9!
.

(c) What is the value of f (11)(0)?

f (11)(0) = 0.

(d) What is the value of lim
x→0

f(x)?

lim
x→0

f(x) = lim
x→0

(−1)2x0

3!
+

(−1)3x4

5!
+ . . .

=
1

6
.
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6. (10 points) Write out the first two terms and then find the sum of each of the following

convergent series. You do not need to show the series are convergent. Your table of Maclaurin

series expansions might be helpful.

(a)
∞∑
n=1

(−1)n−1

n(−3)n
=

∞∑
n=1

(−1)n−1

n(−3)n
=

(−1)0

1(−3)1
+

(−1)1

2(−3)2
+ . . . =

∞∑
n=1

(−1)n−1

n
(−1

3
)n = ln(

2

3
).

(b)
∞∑
n=0

4n

(−5)nn!
=

∞∑
n=0

4n

(−5)nn!
=

40

(−5)00!
+

4!

(−5)11!
+ . . . = e−

4
5 .

(c)
∞∑
n=0

3(−1)n−1

(2n+ 1)22n+1
=

∞∑
n=0

3(−1)n−1

(2n+ 1)22n+1
=

3(−1)−1

2
+

3(−1)0

(3)23
+. . . = (−3)

∞∑
n=0

(−1)n

2n+ 1
(
1

2
)2n+1 = (−3) tan−1(

1

2
).

7



7. (10 points) Consider the parametric equations for a curve C(θ) defined by

x = 5 cos(θ), y = 2 sin(θ)

(a) Eliminate the parameter, and write the resulting Cartesian equation in the form given

below. No credit will be given for solutions not showing any work.

y2

4
= sin2(θ) = 1− cos2(θ) = 1− (

x

5
)2.

(b) Find an interval of θ-values so that C(θ) = (5 cos(θ), 2 sin(θ)) traces out the upper half

of an ellipse (in the counter-clockwise direction).

[0, π].
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