Math 143: Calculus III

Midterm 1 ANSWERS

February 18, 2015

1. (18 points) Consider the parametric curve $x=2 t^{3}+3, y=3-3 t^{2}$, whose graph appears below:

(a) Find all points on the curve such that the slope of the tangent line is $\frac{1}{2}$.
-The slope of the tangent line is $\frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{-6 t}{6 t^{2}}=-\frac{1}{t}$. This equals $\frac{1}{2}$ when $t=-2$, which gives $(x, y)=(-13,-9)$.
(b) Find the coordinates of the two intersection points of the curve with the x-axis, and the corresponding values of t.
-These points occur when $y=0$, meaning $3-3 t^{2}=0$. Solving gives $t=-1,1$ and plugging in yields $(x, y)=(1,0)$ and $(5,0)$.
(c) Find the area of the region lying below the curve and above the x-axis.

- Notice that x is an increasing function of t, so the curve is traced left to right. Then the desired area is given by

$$
\int_{-1}^{1}\left[3-3 t^{2}\right] \cdot\left[6 t^{2}\right] d t=18 \int_{-1}^{1}\left[t^{2}-t^{4}\right] d t=\left.18\left[\frac{t^{3}}{3}-\frac{t^{5}}{5}\right]\right|_{t=-1} ^{1}=18\left(\frac{2}{3}-\frac{2}{5}\right)=\frac{24}{5} .
$$

2. (8 points) Make the following coordinate conversions. (Your answers should not have any functions in them.)
(a) Convert the point $(x, y)=(-1, \sqrt{3})$ to polar coordinates.
-We have $r=\sqrt{(-1)^{2}+(\sqrt{3})^{2}}=2$ and $\theta=\tan ^{-1}(-\sqrt{3})+\pi=\frac{2 \pi}{3}$, giving $\left(2, \frac{2 \pi}{3}\right)$.
(b) Convert the point $(r, \theta)=(\sqrt{3}, \pi / 6)$ to rectangular coordinates.
-We have $x=r \cos (\theta)=\frac{3}{2}$ and $y=r \sin (\theta)=\frac{\sqrt{3}}{2}$, giving $\left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right)$.
(c) Convert the point $(x, y)=(6,-6)$ to polar coordinates.
\bullet We have $r=\sqrt{6^{2}+(-6)^{2}}=6 \sqrt{2}$ and $\theta=\tan ^{-1}(-1)=-\frac{\pi}{4}$, giving $\left(6 \sqrt{2},-\frac{\pi}{4}\right)$.
(d) Convert the point $(r, \theta)=(-6,-5 \pi)$ to rectangular coordinates.

- We have $x=r \cos (\theta)=6$ and $y=r \sin (\theta)=0$, giving $(6,0)$.

3. (6 points) Sketch the polar region defined by the inequalities $-\frac{\pi}{4} \leq \theta \leq \pi, 1 \leq r \leq 3$. Make sure to label any relevant distances on the x and y axes.

- This is a sector of an annulus:

4. (12 points) Match the following curves to their equations.

Curves:
(a)

(b)

(c)

(d)

(e)

(f)

Equations:

1.) $x=\sin (t)$,
$y=2 \sin ^{2}(t)-1$
4.) $x=\cos ^{2}(t)$,
$y=1-2 \sin (t)$
7.) $x=1+2 \cos (t)$,
$y=1+\sin (t)$
2.) $r=2 \sin (2 \theta)$
5.) $r=2 \sin (3 \theta)$
8.) $r=2 \sin (4 \theta)$
3.) $r=1+2 \cos (\theta)$
6.) $r=1+2 \sin (\theta)$
9.) $r=1+\sin (\theta)$

Answers:

(a) 9
(b) 6
(c) 5
(d) 7
(e) 2
(f) 1

The simplest strategy is to plug in a few values of t or θ to each equation.
5. (12 points) Consider the polar curve $r=1+\sin (6 \theta)$ for $0 \leq \theta \leq 2 \pi$.
(a) Find all values of θ in the interval $[0,2 \pi]$ where this curve passes through the origin.

- The curve goes through the origin when $r=0$, namely when $\sin (6 \theta)=-1$. This occurs when $6 \theta=\frac{3 \pi}{2}+2 \pi k$ for some integer k : thus, for $\theta=\frac{\pi}{4}+\frac{\pi k}{3}$.
- The values in $[0,2 \pi]$ are $\theta=\frac{\pi}{4}+\frac{\pi k}{3}$ for $0 \leq k \leq 5$.
\bullet Explicitly, they are $\theta=\frac{\pi}{4}, \frac{7 \pi}{12}, \frac{11 \pi}{12}, \frac{5 \pi}{4}, \frac{19 \pi}{12}, \frac{23 \pi}{24}$.
(b) Sketch the graph of this curve. Make sure to label any relevant distances on the x and y axes.

We first sketch $r=1+\sin (6 \theta)$ as a rectangular plot. We then use the features of this graph to make the polar plot. We know that sine oscillates between -1 and 1 so the graph will start at $(0,1)$ and move up to a maximum of 2 and down to a minimum of 0 . Between $\theta=0$ and $\theta=2 \pi$, the graph will go through six periods:

From this we see the polar curve will start at $(1,0)$ and sweep out away from the origin to a maximum distance of $r=2$, then back toward the origin at $\theta=\pi / 4$ (as we computed in part (a)). It will then sweep out again, and then back in, passing through $(0,1)$ at $\theta=\pi / 2$, hitting the origin once more at $\theta=7 \pi / 12$. It will then sweep out and back in again, symmetrically, until we reach $\theta=2 \pi$. This occurs six times, so the overall shape is of a tilted six-petaled flower (above).
Another option is to make a table of values of points (r, θ) on the graph, for various nice values of θ. Although this would work in principle, it would require plugging in at least 10 or so points to get the proper shape.
6. (12 points) At time t seconds $(t \geq 0)$, a particle's position in the plane is given by

$$
x=e^{t}+e^{-t}, \quad y=2 t+5
$$

(a) Is the particle ever moving directly in the vertical direction? Directly in the horizontal direction? If so, when?

- The slope of the tangent line is $\frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{2}{e^{t}-e^{-t}}$. Notice that a slope of zero means the particle is moving horizontally, while a slope of ∞ means the particle is moving vertically.
- The numerator is never zero, and the denominator is always finite. So the slope is never zero, meaning that the particle is never moving directly horizontally.
-The slope is ∞ when the denominator is zero, which occurs when $e^{t}=e^{-t}$. So the particle is moving directly vertically when $t=0$.
(b) Find the distance traveled by the particle between time $t=0 \mathrm{~s}$ and time $t=1 \mathrm{~s}$.
- The arclength is

$$
\begin{aligned}
s & =\int_{0}^{1} \sqrt{\left(e^{t}-e^{-t}\right)^{2}+2^{2}} d t=\int_{0}^{1} \sqrt{e^{2 t}-2+e^{-2 t}+4} d t \\
& =\int_{0}^{1} \sqrt{e^{2 t}+2+e^{-2 t}} d t=\int_{0}^{1} \sqrt{\left(e^{t}+e^{-t}\right)^{2}} d t \\
& =\int_{0}^{1}\left(e^{t}+e^{-t}\right) d t=\left.\left(e^{t}-e^{-t}\right)\right|_{t=-1} ^{1}=e-\frac{1}{e}
\end{aligned}
$$

7. (7 points) Find the area enclosed by the polar curve $r=\sqrt{3+2 \sin (4 \theta)}$.

- A quick sketch of this curve indicates that it completes one revolution between $\theta=0$ and $\theta=2 \pi$, and never crosses through the origin (because the quantity under the square root is always positive). It is not actually necessary to sketch the curve to see this.
- Thus the area is given by

$$
A=\frac{1}{2} \int_{0}^{2 \pi} r^{2} d \theta=\frac{1}{2} \int_{0}^{2 \pi}(3+2 \sin (4 \theta)) d \theta=\left.\frac{1}{2}\left(3 \theta-\frac{1}{2} \cos (4 \theta)\right)\right|_{\theta=0} ^{2 \pi}=3 \pi .
$$

8. (9 points) Let $z=2-2 i$ and $w=5+i$. Compute:
(a) $z^{2}+2 w$, in $a+b i$ form.
-We have $z^{2}=(2-2 i)^{2}=4-8 i+4 i^{2}=-8 i$ so $z^{2}+2 w=10-6 i$.
(b) $\frac{z}{w}$, in $a+b i$ form.
-We write $\frac{2-2 i}{5+i}=\frac{(2-2 i)(5-i)}{(5+i)(5-i)}=\frac{10-10 i-2 i+2 i^{2}}{25-i^{2}}=\frac{8-12 i}{26}=\frac{4}{13}-\frac{6}{13} i$.
(c) Real numbers r and θ such that $z=r e^{i \theta}$.

- We take $r=|z|=\boxed{2 \sqrt{2}}$ and $\theta=\tan ^{-1}(-2 / 2)=-\frac{\pi}{4}$ (or $\frac{7 \pi}{4}$).

9. (8 points) Find, in $a+b i$ form, all complex numbers z such that $z^{4}=-16$.

- We convert to polar form: $-16=16 \cdot e^{i \pi}$.
- Then the fourth roots are given by $16^{1 / 4} \cdot e^{i \pi / 4} \cdot e^{2 k i \pi / 4}$ for $k=0,1,2,3$.
- These simplify to $2 \cdot\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i\right) \cdot i^{k}=(\sqrt{2}+\sqrt{2} i) i^{k}$.
- Thus, we obtain $\sqrt{2}+\sqrt{2} i, \sqrt{2}-\sqrt{2} i,-\sqrt{2}+\sqrt{2} i,-\sqrt{2}-\sqrt{2} i$.

10. (8 points) Two complex numbers have a sum of 4 and a product of 6 . Find them.

- Suppose they are z and w. Then $z+w=4$ and $z w=6$.
- Since $w=4-z$ we plug in to the second equation to get $z(4-z)=6$, or $4 z-z^{2}=6$.
- This is the same as the quadratic equation $z^{2}-4 z+6=0$.
- Solving yields $z=\frac{4 \pm \sqrt{16-24}}{2}=\frac{4 \pm \sqrt{-8}}{2}=\frac{4 \pm 2 \sqrt{2} i}{2}=2 \pm \sqrt{2} i$.
- Hence the numbers are $2+\sqrt{2} i$ and $2-\sqrt{2} i$.

