## Math 143: Calculus III

## Midterm 1 ANSWERS February 18, 2015

1. (18 points) Consider the parametric curve  $x = 2t^3 + 3$ ,  $y = 3 - 3t^2$ , whose graph appears below:



(a) Find all points on the curve such that the slope of the tangent line is  $\frac{1}{2}$ .

•The slope of the tangent line is  $\frac{dy}{dx} = \frac{y'(t)}{x'(t)} = \frac{-6t}{6t^2} = -\frac{1}{t}$ . This equals  $\frac{1}{2}$  when t = -2, which gives  $(x, y) = \boxed{(-13, -9)}$ .

- (b) Find the coordinates of the two intersection points of the curve with the x-axis, and the corresponding values of t.
  - •These points occur when y = 0, meaning  $3 3t^2 = 0$ . Solving gives t = -1, 1 and plugging in yields (x, y) = (1, 0) and (5, 0).
- (c) Find the area of the region lying below the curve and above the x-axis.
  - •Notice that x is an increasing function of t, so the curve is traced left to right. Then the desired area is given by

$$\int_{-1}^{1} \left[3 - 3t^2\right] \cdot \left[6t^2\right] dt = 18 \int_{-1}^{1} \left[t^2 - t^4\right] dt = 18 \left[\frac{t^3}{3} - \frac{t^5}{5}\right] \Big|_{t=-1}^{1} = \left[18 \left(\frac{2}{3} - \frac{2}{5}\right)\right] = \left[\frac{24}{5}\right] \left[\frac{24}{5}\right] = \left[\frac{24}{5}\right] \left[\frac{1}{5}\right] \left[\frac{1}$$

2. (8 points) Make the following coordinate conversions. (Your answers should not have any functions in them.)

(a) Convert the point  $(x, y) = (-1, \sqrt{3})$  to polar coordinates.

• We have 
$$r = \sqrt{(-1)^2 + (\sqrt{3})^2} = 2$$
 and  $\theta = \tan^{-1}(-\sqrt{3}) + \pi = \frac{2\pi}{3}$ , giving  $\left(2, \frac{2\pi}{3}\right)$ .

(b) Convert the point  $(r, \theta) = (\sqrt{3}, \pi/6)$  to rectangular coordinates.

•We have 
$$x = r\cos(\theta) = \frac{3}{2}$$
 and  $y = r\sin(\theta) = \frac{\sqrt{3}}{2}$ , giving  $\left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right)$ .

(c) Convert the point (x, y) = (6, -6) to polar coordinates.

•We have 
$$r = \sqrt{6^2 + (-6)^2} = 6\sqrt{2}$$
 and  $\theta = \tan^{-1}(-1) = -\frac{\pi}{4}$ , giving  $\left(6\sqrt{2}, -\frac{\pi}{4}\right)$ .

(d) Convert the point  $(r, \theta) = (-6, -5\pi)$  to rectangular coordinates.

•We have 
$$x = r\cos(\theta) = 6$$
 and  $y = r\sin(\theta) = 0$ , giving  $(6, 0)$ .

**3.** (6 points) Sketch the polar region defined by the inequalities  $-\frac{\pi}{4} \le \theta \le \pi$ ,  $1 \le r \le 3$ . Make sure to label any relevant distances on the x and y axes.

• This is a sector of an annulus:



4. (12 points) Match the following curves to their equations. Curves:



## Equations:

4.)  $x = \cos^2(t)$ , 1.)  $x = \sin(t)$ , 7.)  $x = 1 + 2\cos(t)$ ,  $y = 2\sin^2(t) - 1$  $y = 1 - 2\sin(t)$  $y = 1 + \sin(t)$ 2.)  $r = 2\sin(2\theta)$ 5.)  $r = 2\sin(3\theta)$ 8.)  $r = 2\sin(4\theta)$ 3.)  $r = 1 + 2\cos(\theta)$ 6.)  $r = 1 + 2\sin(\theta)$ 9.)  $r = 1 + \sin(\theta)$ 

## **Answers:**

(a) 9 (b) 6 (c) 5 (d) 7 (e) 2 (f) 1

The simplest strategy is to plug in a few values of t or  $\theta$  to each equation.

- 5. (12 points) Consider the polar curve  $r = 1 + \sin(6\theta)$  for  $0 \le \theta \le 2\pi$ .
- (a) Find all values of  $\theta$  in the interval  $[0, 2\pi]$  where this curve passes through the origin.

•The curve goes through the origin when r = 0, namely when  $\sin(6\theta) = -1$ . This occurs when  $6\theta = \frac{3\pi}{2} + 2\pi k$  for some integer k: thus, for  $\theta = \frac{\pi}{4} + \frac{\pi k}{3}$ . •The values in  $[0, 2\pi]$  are  $\theta = \left[\frac{\pi}{4} + \frac{\pi k}{3}\right]$  for  $0 \le k \le 5$ . •Explicitly, they are  $\theta = \left[\frac{\pi}{4}, \frac{7\pi}{12}, \frac{11\pi}{12}, \frac{5\pi}{4}, \frac{19\pi}{12}, \frac{23\pi}{24}\right]$ .

(b) Sketch the graph of this curve. Make sure to label any relevant distances on the x and y axes.

We first sketch  $r = 1 + \sin(6\theta)$  as a rectangular plot. We then use the features of this graph to make the polar plot. We know that sine oscillates between -1 and 1 so the graph will start at (0, 1) and move up to a maximum of 2 and down to a minimum of 0. Between  $\theta = 0$  and  $\theta = 2\pi$ , the graph will go through six periods:



From this we see the polar curve will start at (1,0) and sweep out away from the origin to a maximum distance of r = 2, then back toward the origin at  $\theta = \pi/4$  (as we computed in part (a)). It will then sweep out again, and then back in, passing through (0,1) at  $\theta = \pi/2$ , hitting the origin once more at  $\theta = 7\pi/12$ . It will then sweep out and back in again, symmetrically, until we reach  $\theta = 2\pi$ . This occurs six times, so the overall shape is of a tilted six-petaled flower (above).

Another option is to make a table of values of points  $(r, \theta)$  on the graph, for various nice values of  $\theta$ . Although this would work in principle, it would require plugging in at least 10 or so points to get the proper shape.

6. (12 points) At time t seconds  $(t \ge 0)$ , a particle's position in the plane is given by

$$x = e^t + e^{-t}, \quad y = 2t + 5.$$

- (a) Is the particle ever moving directly in the vertical direction? Directly in the horizontal direction? If so, when?
  - •The slope of the tangent line is  $\frac{dy}{dx} = \frac{y'(t)}{x'(t)} = \frac{2}{e^t e^{-t}}$ . Notice that a slope of zero means the particle is moving horizontally, while a slope of  $\infty$  means the particle is moving vertically.
  - •The numerator is never zero, and the denominator is always finite. So the slope is never zero, meaning that the particle is never moving directly horizontally.
  - •The slope is  $\infty$  when the denominator is zero, which occurs when  $e^t = e^{-t}$ . So the particle is moving directly vertically when t = 0.
- (b) Find the distance traveled by the particle between time t = 0s and time t = 1s.

•The arclength is

$$s = \int_0^1 \sqrt{(e^t - e^{-t})^2 + 2^2} \, dt = \int_0^1 \sqrt{e^{2t} - 2 + e^{-2t} + 4} \, dt$$
$$= \int_0^1 \sqrt{e^{2t} + 2 + e^{-2t}} \, dt = \int_0^1 \sqrt{(e^t + e^{-t})^2} \, dt$$
$$= \int_0^1 (e^t + e^{-t}) \, dt = (e^t - e^{-t}) \left|_{t=-1}^1 = \boxed{e - \frac{1}{e}}\right|$$

7. (7 points) Find the area enclosed by the polar curve  $r = \sqrt{3 + 2\sin(4\theta)}$ .

- A quick sketch of this curve indicates that it completes one revolution between  $\theta = 0$ and  $\theta = 2\pi$ , and never crosses through the origin (because the quantity under the square root is always positive). It is not actually necessary to sketch the curve to see this.
- Thus the area is given by

$$A = \frac{1}{2} \int_0^{2\pi} r^2 d\theta = \frac{1}{2} \int_0^{2\pi} (3 + 2\sin(4\theta)) d\theta = \frac{1}{2} \left( 3\theta - \frac{1}{2}\cos(4\theta) \right) \Big|_{\theta=0}^{2\pi} = \overline{3\pi}.$$

- 8. (9 points) Let z = 2 2i and w = 5 + i. Compute:
- (a)  $z^2 + 2w$ , in a + bi form.

•We have 
$$z^2 = (2-2i)^2 = 4 - 8i + 4i^2 = -8i$$
 so  $z^2 + 2w = 10 - 6i$ 

(b)  $\frac{z}{w}$ , in a + bi form.

•We write 
$$\frac{2-2i}{5+i} = \frac{(2-2i)(5-i)}{(5+i)(5-i)} = \frac{10-10i-2i+2i^2}{25-i^2} = \frac{8-12i}{26} = \left\lfloor \frac{4}{13} - \frac{6}{13}i \right\rfloor$$

(c) Real numbers r and  $\theta$  such that  $z = r e^{i\theta}$ .

•We take 
$$r = |z| = \boxed{2\sqrt{2}}$$
 and  $\theta = \tan^{-1}(-2/2) = \boxed{-\frac{\pi}{4}}$  (or  $\boxed{\frac{7\pi}{4}}$ ).

- 9. (8 points) Find, in a + bi form, all complex numbers z such that  $z^4 = -16$ .
  - We convert to polar form:  $-16 = 16 \cdot e^{i\pi}$ .
  - Then the fourth roots are given by  $16^{1/4} \cdot e^{i\pi/4} \cdot e^{2ki\pi/4}$  for k = 0, 1, 2, 3.
  - These simplify to  $2 \cdot \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) \cdot i^k = (\sqrt{2} + \sqrt{2}i)i^k$ .
  - Thus, we obtain  $\sqrt{2} + \sqrt{2}i$ ,  $\sqrt{2} \sqrt{2}i$ ,  $-\sqrt{2} + \sqrt{2}i$ ,  $-\sqrt{2} \sqrt{2}i$ .

10. (8 points) Two complex numbers have a sum of 4 and a product of 6. Find them.

- Suppose they are z and w. Then z + w = 4 and zw = 6.
- Since w = 4 z we plug in to the second equation to get z(4 z) = 6, or  $4z z^2 = 6$ .
- This is the same as the quadratic equation  $z^2 4z + 6 = 0$ .
- Solving yields  $z = \frac{4 \pm \sqrt{16 24}}{2} = \frac{4 \pm \sqrt{-8}}{2} = \frac{4 \pm 2\sqrt{2}i}{2} = 2 \pm \sqrt{2}i.$
- Hence the numbers are  $2 + \sqrt{2}i$  and  $2 \sqrt{2}i$ .