Math 143: Calculus III

Midterm 1 February 17, 2015

NAME (please print legibly): ______ Your University ID Number: ______

- The presence of any electronic or calculating device at this exam is strictly forbidden, including (but not limited to) calculators, cell phones, and iPods.
- No notes, papers, books, or other aids are permitted. A formula sheet appears at the end of the exam; feel free to tear it out.
- Show work and justify all answers. Box final answers.
- You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- Numerical or algebraic simplifications of answers are not required, EXCEPT when specifically stated otherwise.
- You are responsible for checking that this exam has all 10 pages.

QUESTION	VALUE	SCORE
1	18	
2	8	
3	6	
4	12	
5	12	
6	12	
7	7	
8	9	
9	8	
10	8	
TOTAL	100	

1. (18 points) Consider the parametric curve $x = 2t^3 + 3$, $y = 3 - 3t^2$, whose graph appears below:

(a) Find all points on the curve such that the slope of the tangent line is $\frac{1}{2}$.

(b) Find the coordinates of the two intersection points of the curve with the x-axis, and the corresponding values of t.

(c) Find the area of the region lying below the curve and above the x-axis.

2. (8 points) Make the following coordinate conversions. (Your answers should not have any functions in them.)

- (a) Convert the point $(x, y) = (-1, \sqrt{3})$ to polar coordinates.
- (b) Convert the point $(r, \theta) = (\sqrt{3}, \pi/6)$ to rectangular coordinates.
- (c) Convert the point (x, y) = (6, -6) to polar coordinates.
- (d) Convert the point $(r, \theta) = (-6, -5\pi)$ to rectangular coordinates.

3. (6 points) Sketch the polar region defined by the inequalities $-\frac{\pi}{4} \le \theta \le \pi$, $1 \le r \le 3$. Make sure to label any relevant distances on the x and y axes.

4. (12 points) Match the following curves to their equations. Curves:

4.) $x = \cos^2(t)$, 7.) $x = 1 + 2\cos(t)$, 1.) $x = \sin(t)$, $y = 2\sin^2(t) - 1$ $y = 1 - 2\sin(t)$ $y = 1 + \sin(t)$ 2.) $r = 2\sin(2\theta)$ 5.) $r = 2\sin(3\theta)$ 8.) $r = 2\sin(4\theta)$

3.) $r = 1 + 2\cos(\theta)$ 6.) $r = 1 + 2\sin(\theta)$

9.)
$$r = 1 + \sin(\theta)$$

Answers:

(a)_____ (b)_____ (c)____ (d)_____ (e)____ (f)____

- 5. (12 points) Consider the polar curve $r = 1 + \sin(6\theta)$ for $0 \le \theta \le 2\pi$.
- (a) Find all values of θ in the interval $[0, 2\pi]$ where this curve passes through the origin.

(b) Sketch the graph of this curve. Make sure to label any relevant distances on the x and y axes.

6. (12 points) At time t seconds $(t \ge 0)$, a particle's position in the plane is given by

$$x = e^t + e^{-t}, \quad y = 2t + 5.$$

(a) Is the particle ever moving directly in the vertical direction? Directly in the horizontal direction? If so, when?

(b) Find the distance traveled by the particle between time t = 0s and time t = 1s.

7. (7 points) Find the area enclosed by the polar curve $r = \sqrt{3 + 2\sin(4\theta)}$.

- 8. (9 points) Let z = 2 2i and w = 5 + i. Compute:
- (a) $z^2 + 2w$, in a + bi form.

(b)
$$\frac{z}{w}$$
, in $a + bi$ form.

(c) Real numbers r and θ such that $z = r e^{i\theta}$.

9. (8 points) Find, in a + bi form, all complex numbers z such that $z^4 = -16$.

10. (8 points) Two complex numbers have a sum of 4 and a product of 6. Find them.

Common Formulas

• Trigonometry:

0	Definitio	ons:	$\sin(\theta) =$	$= \frac{\text{oppo}}{\text{hypot}}$	$\frac{\text{osite}}{\text{enuse}}, c$	$\frac{\text{te}}{\text{use}}, \cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}}, \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}}$				$\frac{\text{osite}}{\text{cent}}.$
	θ	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$	$2\pi/3$	$3\pi/4$	$5\pi/6$	π
	$\sin(\theta)$	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0
	$\cos(\theta)$	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0	-1/2	$-\sqrt{2}/2$	$-\sqrt{3}/2$	-1
	$\tan(\theta)$	0	$1/\sqrt{3}$	1	$\sqrt{3}$	undef.	$-\sqrt{3}$	-1	$-1/\sqrt{3}$	0

• Addition formula for sine: $\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$.

• Addition formula for cosine:
$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$
.

• Power-reduction formulas:
$$\sin^2(x) = \frac{1 - \cos(2x)}{2}, \ \cos^2(x) = \frac{1 + \cos(2x)}{2}$$

- Pythagorean identity: $\sin^2(\theta) + \cos^2(\theta) = 1$.
- For the parametric curve x = x(t), y = y(t) on the interval $t_1 \le t \le t_2$:

• Tangent slope
$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{y'(t)}{x'(t)}$$
.
• Arclength $s = \int_{t_1}^{t_2} \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$.
• Area $A = \begin{cases} -\int_{t_1}^{t_2} y(t) x'(t) dt & \text{for a curve above the x-axis traced left to right} \\ \int_{t_1}^{t_2} y(t) x'(t) dt & \text{for a curve above the x-axis traced right to left} \end{cases}$
• Area $A = \int_{t_1}^{t_2} x(t) y'(t) dt = \frac{1}{2} \int_{t_1}^{t_2} [x(t)y'(t) - x'(t)y(t)] dt$ for a closed curve traced counterclockwise.

- Polar (r, θ) and rectangular (x, y) coordinate conversions:
 - Cartesian to Polar: $x = r \cos(\theta), y = r \sin(\theta)$.

• Polar to Cartesian:
$$r = \sqrt{x^2 + y^2}$$
, $\theta = \begin{cases} \tan^{-1}(y/x) & \text{if } x > 0\\ \pi + \tan^{-1}(y/x) & \text{if } x < 0 \end{cases}$

• For the polar curve $r = r(\theta)$ on the interval $\theta_1 \leq \theta \leq \theta_2$:

• Tangent slope
$$\frac{dy}{dx} = \frac{r' \sin(\theta) + r \cos(\theta)}{r' \cos(\theta) - r \sin(\theta)}$$
.
• Arclength $s = \int_{\theta_1}^{\theta_2} \sqrt{r^2 + (r')^2} d\theta$.
• Area of "polar sector" $A = \begin{cases} \frac{1}{2} \int_{\theta_1}^{\theta_2} r^2 d\theta & \text{for a curve traced counterclockwise} \\ -\frac{1}{2} \int_{\theta_1}^{\theta_2} r^2 d\theta & \text{for a curve traced clockwise} \end{cases}$

- If z = x + yi is a complex number, where $i^2 = -1$:
 - The complex conjugate is $\overline{z} = x yi$.
 - $\circ \text{ The magnitude (or length) is} |z| = \sqrt{z\overline{z}} = \sqrt{x^2 + y^2}.$ $\circ \text{ The argument (or angle) is } \arg(z) = \begin{cases} \tan^{-1}(y/x) & \text{if } x > 0\\ \pi + \tan^{-1}(y/x) & \text{if } x < 0 \end{cases}$
- Euler's identity: $e^{i\theta} = \cos(\theta) + i \sin(\theta)$.
- We can write $z = r [\cos(\theta) + i \sin(\theta)] = r e^{i\theta}$ where r = |z| and $\theta = \arg(z)$.
- The *n* solutions to $z^n = r e^{i\theta}$ are $z = r^{1/n} e^{i\theta/n} e^{2\pi i k/n}$ where $k = 0, 1, \dots, n-1$.
- The two solutions to $az^2 + bz + c = 0$ are $z = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.