Math 143: Calculus III

Midterm 1

February 17, 2015

NAME (please print legibly): \qquad
Your University ID Number: \qquad

- The presence of any electronic or calculating device at this exam is strictly forbidden, including (but not limited to) calculators, cell phones, and iPods.
- No notes, papers, books, or other aids are permitted. A formula sheet appears at the end of the exam; feel free to tear it out.
- Show work and justify all answers. Box final answers.
- You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- Numerical or algebraic simplifications of answers are not required, EXCEPT when specifically stated otherwise.
- You are responsible for checking that this exam has all 10 pages.

QUESTION	VALUE	SCORE
1	18	
2	8	
3	6	
4	12	
5	12	
6	12	
7	7	
8	9	
9	8	
10	8	
TOTAL	100	

1. (18 points) Consider the parametric curve $x=2 t^{3}+3, y=3-3 t^{2}$, whose graph appears below:

(a) Find all points on the curve such that the slope of the tangent line is $\frac{1}{2}$.
(b) Find the coordinates of the two intersection points of the curve with the x-axis, and the corresponding values of t.
(c) Find the area of the region lying below the curve and above the x-axis.
2. (8 points) Make the following coordinate conversions. (Your answers should not have any functions in them.)
(a) Convert the point $(x, y)=(-1, \sqrt{3})$ to polar coordinates.
(b) Convert the point $(r, \theta)=(\sqrt{3}, \pi / 6)$ to rectangular coordinates.
(c) Convert the point $(x, y)=(6,-6)$ to polar coordinates.
(d) Convert the point $(r, \theta)=(-6,-5 \pi)$ to rectangular coordinates.
3. (6 points) Sketch the polar region defined by the inequalities $-\frac{\pi}{4} \leq \theta \leq \pi, 1 \leq r \leq 3$. Make sure to label any relevant distances on the x and y axes.
4. (12 points) Match the following curves to their equations.

Curves:
(a)

(b)

(c)

(d)

(e)

(f)

Equations:

1.) $x=\sin (t)$,
$y=2 \sin ^{2}(t)-1$
4.) $x=\cos ^{2}(t)$,
$y=1-2 \sin (t)$
7.) $x=1+2 \cos (t)$,
$y=1+\sin (t)$
2.) $r=2 \sin (2 \theta)$
5.) $r=2 \sin (3 \theta)$
8.) $r=2 \sin (4 \theta)$
3.) $r=1+2 \cos (\theta)$
6.) $r=1+2 \sin (\theta)$
9.) $r=1+\sin (\theta)$

Answers:

(a)
(b) \qquad (c)
(d) \qquad
(e) \qquad
(f) \qquad
5. (12 points) Consider the polar curve $r=1+\sin (6 \theta)$ for $0 \leq \theta \leq 2 \pi$.
(a) Find all values of θ in the interval $[0,2 \pi]$ where this curve passes through the origin.
(b) Sketch the graph of this curve. Make sure to label any relevant distances on the x and y axes.
6. (12 points) At time t seconds $(t \geq 0)$, a particle's position in the plane is given by

$$
x=e^{t}+e^{-t}, \quad y=2 t+5 .
$$

(a) Is the particle ever moving directly in the vertical direction? Directly in the horizontal direction? If so, when?
(b) Find the distance traveled by the particle between time $t=0 \mathrm{~s}$ and time $t=1 \mathrm{~s}$.
7. (7 points) Find the area enclosed by the polar curve $r=\sqrt{3+2 \sin (4 \theta)}$.
8. (9 points) Let $z=2-2 i$ and $w=5+i$. Compute:
(a) $z^{2}+2 w$, in $a+b i$ form.
(b) $\frac{z}{w}$, in $a+b i$ form.
(c) Real numbers r and θ such that $z=r e^{i \theta}$.
9. (8 points) Find, in $a+b i$ form, all complex numbers z such that $z^{4}=-16$.
10. (8 points) Two complex numbers have a sum of 4 and a product of 6 . Find them.

Common Formulas

- Trigonometry:
- Definitions: $\sin (\theta)=\frac{\text { opposite }}{\text { hypotenuse }}, \cos (\theta)=\frac{\text { adjacent }}{\text { hypotenuse }}, \tan (\theta)=\frac{\text { opposite }}{\text { adjacent }}$.

θ	0	$\pi / 6$	$\pi / 4$	$\pi / 3$	$\pi / 2$	$2 \pi / 3$	$3 \pi / 4$	$5 \pi / 6$	π
$\sin (\theta)$	0	$1 / 2$	$\sqrt{2} / 2$	$\sqrt{3} / 2$	1	$\sqrt{3} / 2$	$\sqrt{2} / 2$	$1 / 2$	0
$\cos (\theta)$	1	$\sqrt{3} / 2$	$\sqrt{2} / 2$	$1 / 2$	0	$-1 / 2$	$-\sqrt{2} / 2$	$-\sqrt{3} / 2$	-1
$\tan (\theta)$	0	$1 / \sqrt{3}$	1	$\sqrt{3}$	undef.	$-\sqrt{3}$	-1	$-1 / \sqrt{3}$	0

- Addition formula for sine: $\sin (x+y)=\sin (x) \cos (y)+\cos (x) \sin (y)$.
- Addition formula for cosine: $\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$.
- Power-reduction formulas: $\sin ^{2}(x)=\frac{1-\cos (2 x)}{2}, \cos ^{2}(x)=\frac{1+\cos (2 x)}{2}$.
- Pythagorean identity: $\sin ^{2}(\theta)+\cos ^{2}(\theta)=1$.
- For the parametric curve $x=x(t), y=y(t)$ on the interval $t_{1} \leq t \leq t_{2}$:
- Tangent slope $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{y^{\prime}(t)}{x^{\prime}(t)}$.
- Arclength $s=\int_{t_{1}}^{t_{2}} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t$.
- Area $A=\left\{\begin{aligned}-\int_{t_{1}}^{t_{2}} y(t) x^{\prime}(t) d t & \text { for a curve above the } x \text {-axis traced left to right } \\ \int_{t_{1}}^{t_{2}} y(t) x^{\prime}(t) d t & \text { for a curve above the } x \text {-axis traced right to left }\end{aligned}\right.$
- Area $A=\int_{t_{1}}^{t_{2}} x(t) y^{\prime}(t) d t=\frac{1}{2} \int_{t_{1}}^{t_{2}}\left[x(t) y^{\prime}(t)-x^{\prime}(t) y(t)\right] d t$ for a closed curve traced counterclockwise.
- Polar (r, θ) and rectangular (x, y) coordinate conversions:
- Cartesian to Polar: $x=r \cos (\theta), y=r \sin (\theta)$.
- Polar to Cartesian: $r=\sqrt{x^{2}+y^{2}}, \theta=\left\{\begin{array}{ll}\tan ^{-1}(y / x) & \text { if } x>0 \\ \pi+\tan ^{-1}(y / x) & \text { if } x<0\end{array}\right.$.
- For the polar curve $r=r(\theta)$ on the interval $\theta_{1} \leq \theta \leq \theta_{2}$:
- Tangent slope $\frac{d y}{d x}=\frac{r^{\prime} \sin (\theta)+r \cos (\theta)}{r^{\prime} \cos (\theta)-r \sin (\theta)}$.
- Arclength $s=\int_{\theta_{1}}^{\theta_{2}} \sqrt{r^{2}+\left(r^{\prime}\right)^{2}} d \theta$.
- Area of "polar sector" $A=\left\{\begin{aligned} \frac{1}{2} \int_{\theta_{1}}^{\theta_{2}} r^{2} d \theta & \text { for a curve traced counterclockwise } \\ -\frac{1}{2} \int_{\theta_{1}}^{\theta_{2}} r^{2} d \theta & \text { for a curve traced clockwise }\end{aligned}\right.$
- If $z=x+y i$ is a complex number, where $i^{2}=-1$:
- The complex conjugate is $\bar{z}=x-y i$.
- The magnitude (or length) is $|z|=\sqrt{z \bar{z}}=\sqrt{x^{2}+y^{2}}$.
- The argument (or angle) is $\arg (z)=\left\{\begin{array}{ll}\tan ^{-1}(y / x) & \text { if } x>0 \\ \pi+\tan ^{-1}(y / x) & \text { if } x<0\end{array}\right.$.
- Euler's identity: $e^{i \theta}=\cos (\theta)+i \sin (\theta)$.
- We can write $z=r[\cos (\theta)+i \sin (\theta)]=r e^{i \theta}$ where $r=|z|$ and $\theta=\arg (z)$.
- The n solutions to $z^{n}=r e^{i \theta}$ are $z=r^{1 / n} e^{i \theta / n} e^{2 \pi i k / n}$ where $k=0,1, \cdots, n-1$.
- The two solutions to $a z^{2}+b z+c=0$ are $z=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

