Math 143: Calculus III
Midterm 2
November 13, 2008

NAME (please print legibly): ________________________________
Your University ID Number: ________________________________

• The presence of calculators, cell phones, iPods and other electronic devices at this exam is strictly forbidden.

• Show your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.

• Please circle your simplified final answers, where applicable.

• You are responsible for checking that this exam has all 8 pages.

<table>
<thead>
<tr>
<th>QUESTION</th>
<th>VALUE</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. (10 points) Consider the power series

\[\sum_{n=1}^{\infty} (-1)^n \frac{3}{2^n \sqrt{n}} (x + 2)^n \]

(a) Find its radius of convergence.

(b) Find its interval of convergence.
2. (10 points) Consider the power series
\[\sum_{n=1}^{\infty} \frac{n}{4!} (x - 1)^n \]

(a) Find its radius of convergence.

(b) Find its interval of convergence.
3. (15 points)

(a) Write $\frac{1}{1-x}$ as a power series centered at zero.

The radius of convergence for the series is: __________.

(b) Use (a) to find the power series centered at zero for $\frac{1}{4-x}$.

The radius of convergence for the series is: __________.

(c) Use (a) to find the power series centered at 3 for $\frac{1}{4-x}$.

The radius of convergence for the series is: __________.
4. **(15 points)** The power series representation for \(f(x) = \arctan x \), when \(|x| < 1\), is

\[
\arctan x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \ldots
\]

Use this to find the power series representation for the following functions:

(a) \(5 \arctan(3x^2) \)

The radius of convergence for the series is: ___________.

(b) \(\frac{1}{1 + x^2} \)

The radius of convergence for the series is: ___________.

(c) \(\frac{3x}{1 + 16x^4} \)

The radius of convergence for the series is: ___________.

Page 5 of 8
5. **(20 points)** This problem is about the Taylor series centered at \(a = \frac{\pi}{2} \) for the function \(f(x) = \sin x \).

(a) Find the first few terms of this series.

\[
\begin{align*}
c_0 &= \\
c_1 &= \\
c_2 &= \\
c_3 &= \\
c_4 &= \\
c_5 &= \\
c_6 &=
\end{align*}
\]

(b) What is \(T_4(x) \)?

(c) Use \(T_4(x) \) to estimate \(\sin \left(\frac{7\pi}{12} \right) \). (Your answer should depend on \(\pi \).)

(d) Estimate the remainder \(R_4 \left(\frac{7\pi}{12} \right) \). (Your answer should depend on \(\pi \).)
6. (15 points) Let \(f(x) = e^x \).

(a) Find its Taylor series centered at zero. Show all your work!

(b) Use your answer in (a) to express \(\int e^{-x^2} \, dx \) as an infinite series.

(c) Use the first 2 terms in (b) to estimate \(\int_0^1 e^{-x^2} \, dx \)
7. (10 points) For which x values is the function $f(x) = \cos x$ estimated by its 3rd degree Taylor polynomial centered at $a = 0$ with error at most $\frac{1}{100}$? (Hint: Use either Taylors Inequality or the Alternating Series Estimation Theorem. Your answer should be an interval.)

8. (5 points) Let $f(x) = 1 + 7(x - 3) + 29(x - 3)^{13} - 99(x - 3)^{100}$. Find the following:

\[f(3) = \]
\[f''(3) = \]
\[f^{(100)}(3) = \]