1. (10 points) Determine whether the following sequences converge or diverge. If they converge, find their limit. If they diverge, state whether they diverge to $+\infty,-\infty$ or because they oscillate. Justify and show all your work.
(a)

$$
a_{n}=\left(1+\frac{1}{2 n}\right)^{n}
$$

ANSWER:
(b)

$$
a_{n}=\frac{2^{n}}{n 3^{n}}
$$

ANSWER:
2. (10 points) Determine whether the following sequences converge or diverge. If they converge, find their limit. If they diverge, state whether they diverge to $+\infty,-\infty$ or because they oscillate. Justify and show all your work.
(a)

$$
a_{n}=\cos \left(\frac{\ln (n)}{n}\right)
$$

ANSWER:
(b)

$$
a_{n}=\frac{2^{n}}{n^{n}}
$$

ANSWER:
3. (10 points) Determine whether the following series converges or diverges. If it converges, find its sum. Justify and show all your work. Name any test you are using.

$$
\sum_{n=1}^{\infty} \frac{7^{2 n}}{24^{n+1}}
$$

4. (10 points) Determine whether the following series converges or diverges. If it converges, find its sum. Justify and show all your work. Name any test you are using.

$$
\sum_{n=1}^{\infty} \cos \left(\frac{1}{n}\right)-\cos \left(\frac{1}{n+1}\right)
$$

ANSWER:
5. (10 points) Determine whether the following series converges or diverges. Justify and show all your work. Name any test you are using.

$$
\sum_{n=1}^{\infty} \frac{3^{n}+1}{2^{n}-n}
$$

ANSWER:
6. (10 points) Determine whether the following series converge or diverge. Justify and show all your work. Name any test you are using.

$$
\sum_{n=1}^{\infty} \frac{\arctan (n)}{n^{1.2}-6}
$$

ANSWER:
7. (10 points) Determine whether the following series converge or diverge. Justify and show all your work. Name any test you are using.

$$
\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^{3}+5 n}
$$

8. (10 points) Determine whether the following series converge or diverge. Justify and show all your work. Name any test you are using.

$$
\sum_{n=1}^{\infty} \frac{3 n}{n+1}
$$

ANSWER:
9. (10 points) Use the integral test to determine whether the following series converges or diverges. To get full credit you must use the integral test.

$$
\sum_{n=2}^{\infty} \frac{1}{n(\ln n)}
$$

ANSWER:
10. (10 points) Consider the alternating series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{4}}$.
(a) Use the Alternating Series Test to show the series converges.

ANSWER:
(b) How many terms does it require to approximate the sum with error $\leq .001$?

ANSWER:
(c) Approximate the sum of the series to within in .001. (Write it as a single fraction.)

ANSWER:

