1. (10 points) Determine whether the following sequences converge or diverge. If they converge, find their limit. If they diverge, state whether they diverge to $+\infty,-\infty$ or because they oscillate. Justify and show all your work.
(a)

$$
a_{n}=\cos (n)
$$

(b)

$$
a_{n}=\sin \left(\frac{1}{n}\right)
$$

(c)

$$
a_{n}=\ln (2 n+3)-\ln (3 n+2)
$$

(d)

$$
a_{n}=\cos \left(\frac{1}{n}\right)
$$

(e)

$$
a_{n}=\frac{\cos (n)}{n}
$$

(f)

$$
a_{n}=(-1)^{n} \frac{n}{(n+1)^{2}}
$$

(g)

$$
a_{n}=\left(\frac{9}{8}\right)^{n}
$$

(h)

$$
a_{n}=\frac{(-1)^{n}}{6^{n}}
$$

(i)

$$
a_{n}=\ln \left(\frac{1}{n}\right)
$$

(j)

$$
a_{n}=\frac{\ln (n)}{n}
$$

(k)

$$
a_{n}=\frac{2^{n}}{n^{2}}
$$

(1)

$$
a_{n}=\frac{n^{2}}{e^{n}-1}
$$

(m)

$$
a_{n}=\frac{\sin (n)}{e^{n}}
$$

(n)

$$
a_{n}=\frac{\sin (n)}{n!}
$$

(o)

$$
a_{n}=\ln \left(3 n^{2}+1\right)-\ln (n+1)
$$

2. (10 points) Determine whether the following series converge or diverge. If a series converges, find its sum. Justify and show all your work. Name any test you are using.
(a)

$$
\sum_{n=0}^{\infty}\left(\frac{9}{8}\right)^{n}
$$

(b)

$$
\sum_{n=0}^{\infty} \frac{(-3)^{n}+3^{n}}{10^{n}}
$$

(c)

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{6^{n}}
$$

(d)

$$
\sum_{n=1}^{\infty}\left(\sin \left(\frac{1}{n}\right)-\sin \left(\frac{1}{n+1}\right)\right)
$$

(e)

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+3)}
$$

(f)

$$
\sum_{n=2}^{\infty} \frac{3^{n}}{4^{2 n+1}}
$$

(g)

$$
\sum_{n=1}^{\infty} \frac{n}{\ln (n)}
$$

3. (10 points) Determine whether the following series converge or diverge. Justify and show all your work. Name any test you are using.
(a)

$$
\sum_{n=1}^{\infty} \frac{n}{n^{3}+5 n}
$$

(b)

$$
\sum_{n=1}^{\infty} \frac{\arctan (n)}{n^{1.2}-6}
$$

(c)

$$
\sum_{n=1}^{\infty} \frac{6^{n}+n}{5^{n}-9}
$$

(d)

$$
\sum_{n=1}^{\infty} \frac{n^{n}}{n!}
$$

(e)

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n+8}
$$

(f)

$$
\sum_{n=2}^{\infty} \frac{1}{n(\ln n)}
$$

(g)

$$
\sum_{n=1}^{\infty} \frac{\ln (n)}{n^{2}}
$$

(h)

$$
\sum_{n=1}^{\infty} \frac{n}{2 n+5}
$$

(i)

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln n}
$$

(j)

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n+1}\right)^{2}
$$

(k)

$$
\sum_{n=1}^{\infty} \ln \left(\frac{1}{n}\right)
$$

(1)

$$
\sum_{n=1}^{\infty} \frac{4}{n^{1.1}}
$$

(m)

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n} n}{\ln n}
$$

(n)

$$
\sum_{n=1}^{\infty} \frac{1}{e^{n}}
$$

(o)

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}
$$

(p)

$$
\sum_{n=1}^{\infty} \frac{1}{n+1}
$$

(q)

$$
\sum_{n=1}^{\infty} e^{-n}-e^{-(n+1)}
$$

(r)

$$
\sum_{n=1}^{\infty} \frac{n}{n^{3}+5 n}
$$

(s)

$$
\sum_{n=1}^{\infty} \frac{1}{n!}
$$

4. (10 points) Use the integral test to determine whether the following series converges or diverges. To get full credit you must use the integral test.
(a)
(b)

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

(c)

$$
\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}
$$

(d)

$$
\sum_{n=1}^{\infty} \frac{2 n}{n^{2}+5}
$$

5. (10 points) Consider the alternating series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{6}}$.
(a) Use the Alternating Series Test to show the series converges.
(b) How many terms does it require to approximate the sum with error $\leq .001$?
(c) Approximate the sum of the series to within in .001 . (Write it as a single fraction.)
(d) Give upper and lower bounds on the sum of the series.
6. (20 points) Consider the series

$$
\sum_{n=1}^{\infty}\left(\frac{-1}{5}\right)^{n}
$$

(a) How many terms do you have to sum for the partial sum to be within $\frac{1}{125}$ of the convergent value of that series?
(b) What is the approximation (partial sum) you get? (Write it as a single fraction.)
(c) What is the sum of series?
(d) How far off is your approximation from the actual sum?

