Workshop (7): Alternating Series and Conditional Convergence

MTH 143

Warm-up:
Are the following series alternating?

1. $\sum_{n=0}^{\infty} \frac{\cos (n \pi)}{-2^{n}}$
2. $\sum_{n=0}^{\infty} \frac{\cos (n \pi)}{(-2)^{n}}$
3. $\sum_{n=2}^{\infty} \frac{(-1)^{2 n+1}}{(-2)^{2 n}}$

Problems:

1. Consider the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2^{n-1}}
$$

(a) Write out the first 8 terms.
(b) This is a geometric series-find its sum, S. Plot S on a number line.
(c) Find the first 3 terms of the sequence $\left\{S_{2 n}\right\}$, the partial sums whose index is even. Simplify them. Plot these on a the same number line as the sum.
(d) Do the same for $\left\{S_{2 n-1}\right\}$.
(e) Explain why $\left\{S_{2 n}\right\}$ is increasing and $\left\{S_{2 n-1}\right\}$ is decreasing. (Hint: Look at the 8 terms you wrote out. Pair them appropriately.)
(f) Explain why $S_{2 n}<S$ for all n and $S_{2 n+1}>S$ for all S.
(g) Find upper and lower bounds for both sequences. Conclude that both are convergent.
(h) Show that the limit of $\left\{S_{2 n}\right\}$ and of $\left\{S_{2 n-1}\right\}$ are equal by noting that

$$
S_{2 n}=S_{2 n-1}+\left(\frac{-1}{2}\right)^{2 n}
$$

(Take the limit of both sides.)
2. (a) Use the alternating series test to show the convergence of

$$
\frac{1}{\ln 3}-\frac{1}{\ln 4}+\frac{1}{\ln 5}-\frac{1}{\ln 6}+\frac{1}{\ln 7}-\ldots
$$

Then find the smallest n such that the error in using S_{n} as an estimate of the sum is less than one hundredth. (That is, $\left|R_{n}\right|=$ $\left|S-S_{n}\right|<0.01$.)
(b) Now use the remainder estimate obtained from the alternating series test to find the smallest n such that $\left|R_{n}\right|<0.01$ for the series

$$
\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\ldots
$$

(c) Which n is greater? Why?
3. Determine whether each of the following series diverges, converges conditionally, or converges absolutely. Be sure to justify each part of the alternating series test if you use it.
(a) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n!}{n^{n}}$
(b) $\sum_{n=1}^{\infty}(-1)^{n}(\sqrt{n+1}-\sqrt{n})$
4. For what values of p is the series convergent?

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{p}}
$$

