Warm-up:

1. Vocabulary : Discuss the meaning of the following sentence:

An infinite series is said to converge to a sum, S, if and only if the limit, as n approaches infinity, of the partial sums of the series is equal to S.
2. Use sigma notation to describe the following series. Then come up with a different sigma expression for the same series.
(a) $1+\frac{2}{5}+\frac{3}{25}+\frac{4}{125}+\ldots$
(b) $2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots$
3. Write out all the terms of the following finite sums:
(a) $\sum_{i=3}^{7} \frac{1+2^{i}}{37 i^{2}}$
(b) $\sum_{z=-3}^{1} \frac{z^{2}+2 t}{e^{z}}$
4. For the following series, find S_{3}, the third partial sum.

$$
\sum_{n=1}^{\infty} \frac{n^{2}+2^{n}}{3+n^{2}}
$$

Using only the tools we have so far, can you tell whether or not this series converges?

Problems:

1. Answer the following true or false:
(a) If a series $\sum a_{n}$ satisfies $\lim _{n \rightarrow \infty} a_{n}=0$, then $\sum a_{n}$ converges.
(b) If a series $\sum a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.
(c) If $\left\{S_{n}\right\}$ is the sequence of partial sums of a series $\sum a_{n}$, and $\lim _{n \rightarrow \infty} S_{n}=6$, then we are able to determine $\lim _{n \rightarrow \infty} a_{n}$.
(d) If $\left\{S_{n}\right\}$ is the sequence of partial sums of a series $\sum a_{n}$, and $\lim _{n \rightarrow \infty} S_{n}=6$, then $\sum a_{n}=6$.
2. A geometric series has the form $a+a r+a r^{2}+a r^{3}+\ldots$. The number r is called the common ratio. For such a series, the nth partial sum is given by

$$
S_{n}=\frac{a\left(1-r^{n+1}\right)}{1-r}
$$

(a) Go over the algebra we used in class to come up with the nth partial sum. Agree that a geometric series converges if and only if $|r|<1$.
(b) Determine the sum of the series $\sum_{n=2}^{\infty} 5(.89)^{n+1}$.
(c) Determine the sum of the series $\sum_{n=3}^{\infty} \frac{3^{n-1}+1}{4^{n+1}}$.
(d) The following series is an example of a power series:

$$
\sum_{n=0}^{\infty} \frac{(x-3)^{n}}{4^{n}}
$$

If we think of the power series as a function f from \mathbb{R} to \mathbb{R}, what is $f(2)$? What is the domain of f ?

