Warm-up:

1. Plot the following polar points in the $x y$-plane.
(a) $\left(1, \frac{\pi}{3}\right)$
(b) $\left(-1, \frac{\pi}{3}\right)$
(c) $\left(1,-\frac{\pi}{3}\right)$
(d) $\left(-1,-\frac{\pi}{3}\right)$

For each point, find a second polar coordinate pair that describes it.
2. (a) Give polar coordinates to represent the given Cartesian (rectangular) points.
i. $(1,1)$
ii. $(-1,1)$
iii. $(1,-1)$
iv. $(-1,-1)$
(b) The Cartesian points above can be embedded in a circle. Give both the Cartesian equation for this circle and the polar equation for it.

Problems:

1. We will sketch the polar curve $r=\cos \theta$ for $0 \leq \theta \leq \pi$.
(a) First graph it in the $r \theta$-plane. That is, draw a θ axis horizontally and an r axis vertically, and graph $r=\cos \theta$.
(b) Now draw a pair of $x y$-axes.

Sketch the curve $r=2 \cos \theta$ by using your graph in (a). Start by observing how the graph in (a) behaves on the interval $[0, \pi / 2]$. Translate that behavior to polar coordinates in the xy-plane. Then move on to the interval $[\pi / 2 \pi] \ldots$
(c) Place arrows on your sketch to show in which direction the curve is being sketched as θ increases.
(d) Now switch to rectangular coordinates, and check to see that your sketch makes sense. (You will need to complete the square.)
2. (a) Sketch the polar curve $r=2 \cos (2 \theta)$ for $0 \leq \theta \leq 2 \pi$ using the same technique. (You must do step (a)!) It's helpful to draw the dotted lines $\theta=\pi / 4$ and $\theta=3 \pi / 4$.
(b) This time check your work using wolfram alpha.
(c) While you're on wolfram alpha, use it to plot $r=\cos (n \theta)$ and $r=\sin (n \theta)$ for several values of n. Develop a conjecture about this family of curves that depends on whether it's cos or sin and whether n is odd or even. These curves are called polar roses. Polar roses are pretty.
3. Here is the equation of a polar curve called a limaçon:

$$
r=1+2 \sin \theta ; 0 \leq \theta \leq 2 \pi .
$$

Limaçons have the form $r=a+b \sin \theta$ and $r=a+b \cos \theta$. If $a<b$, the curve will develop a loop. If $a=b$, the limaçon will be a cardioid. Sketch the limaçon. When you do the $r \theta$-plane graph at the beginning, be sure to figure out the x-intercepts correctly. What dotted lines (as in 2a) might be helpful?
Now find the area bounded by the inner loop of the limaçon.

