Workshop (11): Taylor and Maclaurin Series

Warmup:

1. Let $f(x)$ have power series expansion

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

(a) Find the first 5 derivatives of the power series.
(b) Evaluate the first 5 derivatives of the power series at a.
(c) Find each of $c_{0}, c_{1}, c_{2}, c_{3}, c_{4}$ in terms of derivatives of f at a.
(d) Generalize your result in (c) to the formula for the Taylor series of f centered at a.
2. Suppose a function f satisfies:
(a) $f(2)=6$
(c) $f^{\prime \prime}(2)=3$
(e) $f^{i v}(2)=0$
(b) $f^{\prime}(2)=1$
(d) $f^{\prime \prime \prime}(2)=-2$

Give the first five terms of the Taylor series for f centered at $x=2$.

Problems: Before you begin, have someone write on the board the Maclaurin series for $e^{x}, \sin x, \arctan x, \ln (1-x)$, and $\cos x$.

1. Find power series for the following functions and their radii of convergence.
(a) $g(x)=3 x^{2} \sin (x / 4)$
(b) $h(x)=6 x e^{x^{2}}$
2. Evaluate the power series.
(a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n+1}}{4^{2 n+1}(2 n+1)!}$
(b) $\frac{8}{6}+\frac{16}{24}+\frac{32}{120}+\frac{64}{720}+\ldots$
(c) $\sum_{n=1}^{\infty} \frac{1}{n 2^{n}}$
3. Use series to evaluate the limits
(a) $\lim _{x \rightarrow 0} \frac{x-\tan ^{-1} x}{x^{3}}$
(b) $\lim _{x \rightarrow 0} \frac{1-\cos x}{1+x-e^{x}}$
4. (From MT2, Fall '16)
(a) Use the Taylor series formula to develop a power series for $f(x)=$ $\ln x$ about $x=2$. Generate enough terms so that you can find a general term for the series in terms of n. (That is, write it as $\sum_{n=0}^{\infty} c_{n}(x-2)^{n}$ for a specific c_{n}.)
(b) Now notice that $\ln x=\ln (2+(x-2))$. Use techniques from the previous chapter to find a power series for $\ln x$ about $x=2$. (That is, find a power series for the derivative of $\ln (2+(x-2))$, and then integrate it.)
