Warm-up:

1. Consider a curve C given by the parametric equations

$$x = f(t), \, y = g(t).$$

With your group, find the formulas:

- (a) $\frac{dy}{dx} =$ (b) $\frac{d^2y}{dx^2} =$
- (c) The area under the curve from t = a to t = b.
- (d) The arc length of the curve from t = a to t = b.

How might you go about remembering these formulas?

Problems

- 1. Find parametric equations that give the following curve: A square whose corners are the points (0,0), (1,0), (1,1), and (0,1). Sketch this curve over the interval $0 < t \le 4$ in a counter-clockwise direction. (You will have to take each side separately, with different parametrizations for $0 < t \le 1, 1 < t \le 2$, etc.)
- 2. Find a, b, c, d and k so that the parametric equations

$$x = a + b\sin(kt), y = c + d\cos(kt)$$

sketch a circle of radius 3 centered at (1, -2) exactly once on the interval $0 \le t \le 4\pi/3$.

- 3. Let C_1 be the parametric curve with $x(t) = e^t \cos(t)$ and $y(t) = e^t \sin(t)$.
 - (a) Think about how this curve behaves. How is it different from C_2 given by $x(t) = \cos(t)$ and $y(t) = \sin(t)$? Sketch this curve as t increases from 0 to 2π . What happens as $t \to \infty$?
 - (b) Compute dy/dx for this curve.
 - (c) Find an equation for the tangent line to C_1 at time $t = \pi/2$ and at time $t = \pi/6$.
 - (d) Find two points on C_1 where the tangent line is horizontal, and two points where the tangent line is vertical.
 - (e) Find an integral giving the arclength of the curve from t = 0 to $t = 2\pi$. (Do not evaluate the integral.) Find an integral giving the area underneath the curve from $t = \pi/4$ to $t = \pi/2$. (Do not evaluate the integral.) Sketch the region whose area you have found.