Warm-up:

1. Consider a curve C given by the parametric equations

$$
x=f(t), y=g(t)
$$

With your group, find the formulas:
(a) $\frac{d y}{d x}=$
(b) $\frac{d^{2} y}{d x^{2}}=$
(c) The area under the curve from $t=a$ to $t=b$.
(d) The arc length of the curve from $t=a$ to $t=b$.

How might you go about remembering these formulas?

Problems

1. Find parametric equations that give the following curve: A square whose corners are the points $(0,0),(1,0),(1,1)$, and $(0,1)$. Sketch this curve over the interval $0<t \leq 4$ in a counter-clockwise direction. (You will have to take each side separately, with different parametrizations for $0<t \leq 1,1<t \leq 2$, etc.)
2. Find a, b, c, d and k so that the parametric equations

$$
x=a+b \sin (k t), y=c+d \cos (k t)
$$

sketch a circle of radius 3 centered at $(1,-2)$ exactly once on the interval $0 \leq t \leq 4 \pi / 3$.
3. Let C_{1} be the parametric curve with $x(t)=e^{t} \cos (t)$ and $y(t)=e^{t} \sin (t)$.
(a) Think about how this curve behaves. How is it different from C_{2} given by $x(t)=\cos (t)$ and $y(t)=\sin (t)$? Sketch this curve as t increases from 0 to 2π. What happens as $t \rightarrow \infty$?
(b) Compute $d y / d x$ for this curve.
(c) Find an equation for the tangent line to C_{1} at time $t=\pi / 2$ and at time $t=\pi / 6$.
(d) Find two points on C_{1} where the tangent line is horizontal, and two points where the tangent line is vertical.
(e) Find an integral giving the arclength of the curve from $t=0$ to $t=2 \pi$. (Do not evaluate the integral.) Find an integral giving the area underneath the curve from $t=\pi / 4$ to $t=\pi / 2$. (Do not evaluate the integral.) Sketch the region whose area you have found.

