MTH142 Workshop 6: Areas and Volumes

Warm-Up

1. Sketch the region enclosed by the given curves. Decide whether to integrate with respect to x or y. Draw a typical approximating rectangle and label its height and width. Then find the area of the region.
(a) $y=x, \quad y=(x-2)^{2}$
(b) $y^{2}=1-x, \quad y^{2}=1+x$
(c) $y=2-\cos (x), \quad y=\cos (x), \quad x=0, \quad x=2 \pi$

Problems

2. Use calculus to find the area of the triangle with the vertices $(0,0),(1,2)$, and $(3,-4)$, then use geometry to check your work.
3. Find the area of the region bounded by the parabola $y=x^{2}$, the tangent line to this parabola at $(2,4)$, and the x-axis.
4. Set up an integral to find the volume of a cap of height h of a sphere with radius r.

5. Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified line. Sketch the region, and separately sketch the solid and a typical disk.
(a) $y=1-x^{2}, y=0$; about the x-axis
(b) $y=\ln x, y=1, y=2$, and $x=0$; about the y-axis (plotted below for convenience)

