MTH142 Workshop 4: The fundamental theorem of calc.; Indefinite integrals

1. Solve the following indefinite integrals:
(a) $\int \frac{4 x^{3}+x^{1 / 3}}{6 x^{4 / 3}} d x$
(b) $\int \frac{\sin x}{\cos ^{2} x} d x$
(c) $\int \csc x \tan x \cos x d x$
2. Suppose

$$
f(x)=\int_{1}^{e^{x}} \frac{1-t}{2+\ln t} d t
$$

For what values of x does $f(x)$ have a local maximum?
3. Let

$$
f(x)= \begin{cases}0 & \text { if } x<0 \\ x & \text { if } 0 \leq x \leq 1 \\ 2-x & \text { if } 1<x \leq 2 \\ 0 & \text { if } x>2\end{cases}
$$

and $g(x)=\int_{0}^{x} f(t) d t$.
(a) Find an expression for $g(x)$ similar to the one for $f(x)$.
(b) Sketch the graphs of f and g.
(c) Where is f differentiable? Where is g differentiable? [Hint: What is the derivative of g ?]
4. Find a function f and a number a such that

$$
6+\int_{a}^{x} \frac{f(t)}{t^{2}} d t=2 \sqrt{x}
$$

for all $x>0$.
5. The acceleration function (in $\mathrm{m} / \mathrm{s}^{2}$) is $a(t)=6 t+3$ and the initial velocity is $v(0)=-6$ m / s for particle moving along a line. Find:
(a) the velocity at time t.
(b) the distance (not displacement) traveled during the first 2 seconds.
6. (a) If $w^{\prime}(t)$ is the rate of growth of a child in pounds per year, what does $\int_{5}^{10} w^{\prime}(t) d t$ represent?
(b) If oil leaks from a tank at a rate of $r(t)$ gallons per minute at time t, what does $\int_{0}^{120} r(t) d t$ represent?
(c) If x is measured in meters and $f(x)$ is measured in newtons, what are the units for $\int_{0}^{100} f(x) d x$?
(d) If the units for x are feet and the units for $a(x)$ are pounds per foot, what are the units for $d a / d x$? What units does $\int_{2}^{8} a(x) d x$ have?

