MTH142 Workshop 3: Areas, Riemann Sums, and the Definite Integral

Work on the following problems with your group.

Warm-Up

1. Use the following theorem for parts (a) and (b) of this problem:

Theorem 4: If f is integrable, then $\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$, where $\Delta x=\frac{b-a}{n}$, and $x_{i}=a+i \Delta x$.
(a) If $f(x)=\frac{x}{x+3}$, set up, but do not calculate, the limit to find the definite integral of f on $[-1,1]$.
(b) Calculate $\int_{0}^{2}(3+2 x) d x$ by taking the limit of the Riemann sum. If you do not remember the summation formula for $\sum_{i=1}^{n} i$, look it up.
(c) Use geometry to check your answer to part (b).

Problems

2. With your group, express the limit as a definite integral on the given interval:
(a) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{8 n+16 i}{n^{2}}\right) \ln \left(1+\left(\frac{2 n+4 i}{n}\right)^{2}\right),[2,6]$.
(b) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\cos x_{i}^{*}}{x_{i}^{*}}\left(\frac{\pi}{n}\right),[\pi, 2 \pi]$, where x_{i}^{*} is any sample point in each subinterval.
3. Consider the following integral with your group:

$$
\int_{0}^{2}\left(\sqrt{4-x^{2}}+3 x\right) d x
$$

(a) Estimate the integral by using four rectangles of equal width and right endpoints.
(b) Write the integral as the limit of a Riemann sum using right endpoints. (Don't try to evaluate the limit - just write down the appropriate limit.)
(c) Evaluate the definite integral by interpreting it in terms of areas. (Note: This means use the area interpretation of the integral (not Riemann sums) to find the exact answer. Start by separating the integral so that you can integrate $\sqrt{4-x^{2}}$ and $3 x$ separately.)
(d) Use a calculator to compare your estimate from part (a) to your answer from part (c).
4. (a) If $f(x)=c$, where c is a positive constant, and constants $a<b$, give a picture of the area under $f(x)$ showing why

$$
\int_{a}^{b} f(x) d x=c(b-a)
$$

Note that this is true for any constants a, b, and c, even if $b<a$ or if c is not positive.
(b) Using the fact that if $f(x) \geq 0$ for $a \leq x \leq b$, then $\int_{a}^{b} f(x) d x \geq 0$, show the following property:

If $h(x) \geq g(x)$ on the interval $[a, b]$, then

$$
\int_{a}^{b} h(x) d x \geq \int_{a}^{b} g(x) d x
$$

[Hint: Since $h(x) \geq g(x)$, then $h(x)-g(x) \geq 0$. Use the function $(h-g)(x)$ in the fact mentioned.]
(c) Using the properties proved in (a) and (b), show the following property:

If $m \leq f(x) \leq M$ for $a \leq x \leq b$, then

$$
m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)
$$

(d) Use the property in part (c) to estimate the value of $\int_{\pi / 4}^{\pi / 3} \tan (x) d x$. [Hint: $\tan (x)$ is strictly increasing on the interval $[\pi / 4, \pi / 3]$.]
5. Show that $\int_{a}^{b} x d x=\frac{b^{2}-a^{2}}{2}$ by taking the limit of the Riemann sum.

Extras

6. Show that $\int_{a}^{b} x^{2} d x=\frac{b^{3}-a^{3}}{3}$ by taking the limit of the Riemann sum.
