MTH142 Workshop 11: Method of Partial Fractions

Warm-Up

1. Write out the partial fraction decomposition of the function, but do not evaluate the values of the coefficients.
(a) $\frac{x}{x^{2}+x-2}$
(c) $\frac{10}{5 x^{2}-2 x^{3}}$
(e) $\frac{1}{x^{3}-1}$
(b) $\frac{x^{3}-2 x^{2}-4}{x^{3}-2 x^{2}}$
(d) $\frac{x^{4}}{\left(x^{2}+2 x-1\right)\left(x^{2}+2\right)^{2}}$
(f) $\frac{x^{6}}{x^{2}-4}$
2. What is wrong with the following partial fraction decomposition, and what should the correct decomposition be?

$$
\frac{1}{\left(x^{2}-9\right)^{2}}=\frac{A x+B}{\left(x^{2}-9\right)^{2}}+\frac{C x+D}{x^{2}-9}
$$

3. Solve the following integral by taking a u-substitution.

$$
\int \frac{x+1}{x^{2}+2 x+5} d x
$$

Problems

4. Find the partial fraction decompositions of the following and evaluate the coefficients.
(a) $\frac{x}{x^{2}+x-2}$
(b) $\frac{10}{5 x^{2}-2 x^{3}}$
(c) $\frac{1}{x^{3}-1}$
5. Solve the following integrals.
(a) $\int_{0}^{1} \frac{x^{3}-4 x-10}{x^{2}-x-6} d x$
(b) $\int \frac{10}{(x-1)\left(x^{2}+9\right)} d x$
(c) $\int \frac{\sqrt{x+4}}{x} d x$

Hint: Take $u=\sqrt{x+4}$.
6. Consider the following integral.

$$
\int \frac{x+4}{x^{2}+2 x+5} d x
$$

(a) We would like to do a u-substitution for the denominator, as in Warm-up 3. However, we cannot with the numerator as is. To fix this, split the fraction into the sum of two fractions, where the first is the integrand from Warm-Up 3.
(b) Split the integral into the sum of two integrals and solve. We know the answer for the first integral, but it remains to solve the second.
Hint: Complete the square.
7. Evaluate the following integral. You will need techniques and answers from previous problems.

$$
\int \frac{1}{x^{3}-1} d x
$$

