MTH142 Workshop 10: Trigometric Substitution

1. Label the triangle for each of the following substitutions. Then make the substitution in the given function to write in terms of θ and use a Pythagorean identity to simplify.

(a) $x=a \sin \theta, \quad f(x)=a^{2}-x^{2}$
(b) $x=a \tan \theta, \quad g(x)=a^{2}+x^{2}$
(c) $x=a \sec \theta, \quad h(x)=x^{2}-a^{2}$
2. Evaluate the following integrals. It may help to recall the trig identity:

$$
\sin (2 \theta)=2 \cos \theta \sin \theta
$$

(a) $\int \frac{\sqrt{x^{2}-9}}{x^{3}} d x$
(b) $\int \sqrt{1-4 x^{2}} d x$
3. Each integral below can be done using a trig substitution or a u-substitution. Try it both ways and compare your answers.
(a) $\int \frac{x}{\sqrt{x^{2}+16}} d x$
(b) $\int \frac{x^{3}}{\sqrt{x^{2}+16}} d x$
4. Try using a u-substitution on the integral below similar to the last problem, and describe why it will not work. Then use a trig-substitution to evaluate the integral.

$$
\int \frac{x^{2}}{\sqrt{16-x^{2}}} d x
$$

5. In each part below, solve the following integral by first completing the square, then by taking a relevant trig substitution:
(a) $\int \frac{d z}{\sqrt{z^{2}+2 z+5}}$
(b) $\int \frac{d z}{\left(z^{2}+2 z+5\right)^{3 / 2}}$
(c) $\int \frac{d z}{\left(z^{2}+2 z+5\right)^{2}}$
