Table of common antiderivatives:

Function	Particular antiderivative	Function	Particular antiderivative
$c f(x)$	$c F(x)$	$\sin x$	$-\cos x$
$f(x)+g(x)$	$F(x)+G(x)$	$\sec ^{2} x$	$\tan x$
$x^{n}(n \neq 1)$	$\frac{x^{n+1}}{n+1}$	$\sec x \tan x$	$\sec x$
$\frac{1}{x}$	$\ln \|x\|$	$\frac{1}{\sqrt{1-x^{2}}}$	$\sin ^{-1} x$
e^{x}	e^{x}	$\frac{1}{1+x^{2}}$	$\tan ^{-1} x$

Fundamental Theorem of Calculus:
(i) Suppose f is continuous on $[a, b]$ and differentiable on (a, b). If $g(x)=$ $\int_{a}^{x} f(t) d t$, then

$$
g^{\prime}(x)=f(x)
$$

for all $x \in(a, b)$.
(ii) Suppose F is an antiderivative of f, and f is continuous on $[a, b]$ and differentiable on (a, b). Then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

