Math 142: Calculus II

Midterm 2
April 5, 2018

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Indicate the lecture time you are registered for with a check in the appropriate box:

Gafni	TR 9:40-11:55pm	
Gafni	TR 2:00-3:15pm	
Passant	TR 3:25-4:40pm	
Zeng	MW 9:00-10:15am	

- You have 75 minutes to work on this exam.
- You are responsible for checking that this exam has all 11 pages.
- No calculators, phones, electronic devices, books, notes are allowed during the exam.
- Show all work and justify all answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- Numerical or algebraic simplifications of answers are not required, except when specifically stated otherwise.
- Please sign the pledge below.

Pledge of Honesty

I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

Signature: \qquad

QUESTION	VALUE	SCORE
1	18	
2	18	
3	12	
4	18	
5	12	
6	22	
TOTAL	100	

1. (18 points) Find the area enclosed by the line $y=x$ and the parabola $y^{2}=x+6$.
2. (18 points) Let h and r be some arbitrary constants. Consider the curve

$$
f(x)=\left(\frac{r}{h}\right) x .
$$

(a) On the axis below, sketch and shade the region enclosed by the curves $y=f(x), y=0$ and $x=h$.

(b) What is the name of the solid formed when we rotate the region enclosed by the curves $y=0, x=h$ and $y=f(x)$ around the x-axis?
[Give the name of the specific shape, e.g. "Cube", not just "solid of revolution"]
(c) Using the method of discs/washers, find the volume of rotation of the region enclosed by the curves $y=0, x=h$ and $y=f(x)$ when rotated around the x-axis.
3. (12 points) Consider the volume obtained by rotating the region under the curve $y=\sin \left(x^{2}\right)$ between $x=0$ and $x=\sqrt{\pi}$ around the line $x=-1$. Set up an integral equal to the volume of this solid. DO NOT SOLVE THIS INTEGRAL.

4. (18 points) A tank (see the Figure below) is full of a liquid that weighs $75 \mathrm{lb} / \mathrm{ft}^{3}$. Set up an integral that can be used to compute the work required to pump the liquid out of the spout. DO NOT SOLVE THIS INTEGRAL.

5. (12 points)

(a) Find the average value of the function $f(x)=2 \sqrt{x}$ on the interval $[0,4]$.
(b) Find the point(s) in the interval $(0,4)$ at which $f(x)$ is equal to its average value.
6. (22 points) Evaluate the following integrals.
(a) $\int x e^{x} d x$
(b) $\int e^{2 x} \sin x d x$

Evaluate the following integral.
(c) $\int(\ln x)^{2} d x$

Blank page for scratch work

