Math 142: Calculus II

Midterm 1
March 1, 2018

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Indicate the lecture time you are registered for with a check in the appropriate box:

Gafni	TR 9:40-10:55pm	
Gafni	TR 2:00-3:15pm	
Passant	TR 3:25-4:40pm	
Zeng	MW 09:00-10:15am	

- You have 75 minutes to work on this exam.
- You are responsible for checking that this exam has all 12 pages.
- No calculators, phones, electronic devices, books, notes are allowed during the exam.
- Show all work and justify all answers. Box final answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- Numerical or algebraic simplifications of answers are not required, except when specifically stated otherwise.
- Please sign the pledge below.

Pledge of Honesty

I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

Signature: \qquad

QUESTION	VALUE	SCORE
1	19	
2	16	
3	15	
4	10	
5	10	
6	15	
7	15	
TOTAL	100	

1. (19 points)

Consider the function $f(p)=\frac{1}{p^{2}-9}$ and its derivatives $f^{\prime}(p)=\frac{-2 p}{\left(p^{2}-9\right)^{2}}, f^{\prime \prime}(p)=\frac{6 p^{2}+18}{\left(p^{2}-9\right)^{3}}$.
(a) Express the domain of $f(p)$ in interval notation.
(b) Find all values of p where vertical asymptotes exist. If none exist note this.
(c) Find the intervals where $f(p)$ is increasing. Give your answer in interval notation, if f is never increasing, then state this.
(d) Find any horizontal asymptotes of $f(p)$, if none exist note this.
(e) Use the above information to sketch the graph of $f(p)$ on the axis below.

2. (16 points) Indicate whether the following statements TRUE or FALSE. If the statement is FALSE please give a brief explanation of why. If the statement is TRUE please sketch a graph of a function (on your own set of axes) which has the desired property.
(a) A function can have three different vertical asymptotes.
(b) A function can have three different horizontal asymptotes.
(c) A function can cross its own vertical asymptote.
(d) A function can cross its own horizontal asymptote.
3. (15 points) A Swiss sweet company has developed a new type of mint. After a meeting between the research department and the people from marketing, the shape decided for the new mint was triangular prism with ends forming equilateral triangles. Each mint has a volume of $\frac{27}{4} \mathrm{~cm}^{3}$. The company wishes to minimize the packaging needed to cover each mint.

Find the length b of the base of the triangle that will minimize the packaging needed to cover the mints.

4. (10 points)

(a) Estimate the definite integral $\int_{0}^{1} \sqrt{1-x^{2}} d x$ by a Riemann sum using $n=4$ rectangles and right endpoints as sample points. You don't need to simplify your answer; you may leave your answer as a sum of four terms.
(b) Evaluate $\int_{0}^{1} \sqrt{1-x^{2}} d x$. Hint: Consider the shape of the region.
5. (10 points)

If $f(x)=\int_{0}^{\sin x} \sqrt{1+t^{2}} d t$ and $g(y)=\int_{3}^{y} f(x) d x$, find $g^{\prime \prime}(\pi)$.
6. (15 points) Evaluate the following integrals. Express each answer as a single fraction.
(a) $\int_{-1}^{2}(3 u-2)(u+1) d u$
(b) $\int_{1}^{4} \frac{2+x^{2}}{\sqrt{x}} d x$
(c) Remember that your answer should be a fraction (with no e or ln).

$$
\int_{0}^{\sqrt{\ln 2}} x e^{x^{2}} d x
$$

7. (15 points) Evaluate the following integrals.
(a) $\int \sec ^{2} x+1 d x$
(b) $\int \cot (x) d x$
(c) $\int \frac{1}{(2 x+5)^{3}} d x$

Blank page for scratch work

