Math 142: Calculus II

Midterm 2
November 16, 2017

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Indicate your instructor with a check in the appropriate box:

Crossen	MW 9-10:15	
Zhong	MW 3:25-4:40	

- You have 75 minutes to work on this exam.
- You are responsible for checking that this exam has all 9 pages.
- No calculators, phones, electronic devices, books, notes are allowed during the exam.
- Show all work and justify all answers.
- Please sign the pledge below.

Pledge of Honesty

I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

Signature: \qquad

QUESTION	VALUE	SCORE
1	15	
2	15	
3	10	
4	10	
5	10	
6	15	
TOTAL	75	

1. (15 points) Evaluate the following indefinite integrals.
(a) $\int x^{3} \ln x d x$.
(b) $\int \sec ^{4} x d x$.
2. (15 points) Evaluate the following definite integrals. Your answer should NOT involve any trigonometric functions.
(a) $\int_{0}^{1} \frac{x^{2}}{1+x^{6}} d x$.
(b) $\int_{0}^{\pi / 6} \sin ^{3} x d x$.
3. (10 points) Consider the function $f(x)=3 x^{2}-12 x-10$.
(a) For $b>0$, compute the average value of $f(x)$ on the interval $0 \leq x \leq b$. Note: Your answer should be a function of b.
(b) Find all numbers $b>0$ such that the average value of $f(x)$ on $[0, b]$ is equal to 6 .
4. (10 points) The following problems concern the solid of revolution generated by rotating about a given axis the region R, which is enclosed by the curve $y=x^{2}$ and the curve $y=2 x$. You may use either the method of disks/washers or the method of cylindrical shells, but you must clearly indicate which one you are using in each problem.
(a) If R is rotated about the x-axis, set up but do not evaluate an integral for computing the volume of the resulting solid.
(b) If R is rotated about the y-axis, set up but do not evaluate an integral for computing the volume of the resulting solid.
5. (10 points) Consider the functions $f(x)=\sin x$ and $g(x)=\cos x$. Compute the area between the graphs of these two functions on the interval $[-\pi / 2, \pi / 2]$. Your answer should NOT involve any trigonometric functions.
6. (15 points) A tank has the shape of an inverted circular cone with height 6 m and base radius 3 m . It is filled with water to a height of 4 m . Find the work required to empty the tank by pumping all of the water to the top of the tank. (The density of water is 1000 $\mathrm{kg} / \mathrm{m}^{3}$.)

Blank page for scratch work

Formula Sheet

- $\sin ^{2} x+\cos ^{2} x=1$
- $1+\tan ^{2} x=\sec ^{2} x$
- $1+\cot ^{2} x=\csc ^{2} x$
- $\sin (2 x)=2 \sin x \cos x$
- $\sin ^{2} x=\frac{1-\cos (2 x)}{2}$
- $\cos ^{2} x=\frac{1+\cos (2 x)}{2}$
- $\sin (x+y)=\sin x \cos y+\cos x \sin y$
- $\cos (x+y)=\cos x \cos y-\sin x \sin y$
- $\sin x \cos y=\frac{\sin (x-y)+\sin (x+y)}{2}$
- $\sin x \sin y=\frac{\cos (x-y)-\cos (x+y)}{2}$
- $\cos x \cos y=\frac{\cos (x-y)+\cos (x+y)}{2}$

