MATH 142

Midterm 2 ANSWERS

April 1, 2014

1. (8 points)

Find

$$
\frac{d}{d x} \int_{1}^{x^{3}} \cos t d t
$$

Answer:

Let $K(x)=\int_{1}^{x} \cos t d t$, then $K^{\prime}(x)=\cos x$ by FTC. Thus, by the chain rule

$$
\frac{d}{d x} \int_{1}^{x^{3}} \cos t d t=\frac{d}{d x} K\left(x^{3}\right)=K^{\prime}\left(x^{3}\right) \cdot 3 x^{2}=3 x^{2} \cos x^{3}
$$

2. (48 points) Evaluate the following integrals.
(a) (8 points)

$$
\int_{0}^{1}\left(3 \sqrt{x}-\frac{2}{1+x^{2}}\right) d x
$$

Answer:
(a)

$$
\int_{0}^{1}\left(3 \sqrt{x}-\frac{2}{1+x^{2}}\right) d x=\left[2 x^{3 / 2}-2 \arctan x\right]_{0}^{1}=(2-2 \arctan 1)-(0)=2-\frac{\pi}{2} .
$$

(b) (8 points)

$$
\int \frac{\sin \theta}{\cos ^{2} \theta} d \theta
$$

Answer:
(b)

$$
\int \frac{\sin \theta}{\cos ^{2} \theta} d \theta=\int \tan \theta \sec \theta d \theta=\sec \theta+C
$$

(c) (8 points)

$$
\int x^{3}\left(5-x^{2}\right) d x
$$

Answer:

(c)

$$
\int x^{3}\left(5-x^{2}\right) d x=\int\left(5 x^{3}-x^{5}\right) d x=\frac{5}{4} x^{4}-\frac{1}{6} x^{6}+C .
$$

(d) (8 points)

$$
\int \frac{1}{x^{2} \sqrt{1+1 / x}} d x
$$

Answer:

(d) Let $u=1+1 / x$, then $d u=-\left(1 / x^{2}\right) d x$. Hence

$$
\int \frac{1}{x^{2} \sqrt{1+1 / x}} d x=-\int \frac{1}{\sqrt{u}} d u=-2 \sqrt{u}+C=-2 \sqrt{1+1 / x}+C
$$

(e) (8 points)

$$
\int_{0}^{2} 2 e^{x / 2} d x
$$

Answer:

(e)

$$
\int_{0}^{2} 2 e^{x / 2} d x=\left[4 e^{x / 2}\right]_{0}^{2}=4 e-4
$$

(f) (8 points)

$$
\int_{-1}^{1}\left|x^{2}-x\right| d x
$$

Answer:

(f) Note that $x^{2}-x=x(x-1) \leq 0$ if and only if $0 \leq x \leq 1$. Thus $\left|x^{2}-x\right|=x^{2}-x$ for
$-1 \leq x \leq 0$ and $\left|x^{2}-x\right|=x-x^{2}$ for $0 \leq x \leq 1$. Therefore

$$
\begin{aligned}
\int_{-1}^{1}\left|x^{2}-x\right| d x & =\int_{-1}^{0}\left(x^{2}-x\right) d x+\int_{0}^{1}\left(x-x^{2}\right) d x \\
& =\left[\frac{1}{3} x^{3}-\frac{1}{2} x^{2}\right]_{-1}^{0}+\left[\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right]_{0}^{1} \\
& =-(-1 / 3-1 / 2)+(1 / 2-1 / 3)=1
\end{aligned}
$$

3. (16 points) An object is moving in such a way that its velocity function at time t is given by $v(t)=\sin (t)$.
(a) (8 points) Find the displacement from $t=0$ to $t=2 \pi$.

Answer:
(a)

$$
\int_{0}^{2 \pi} \sin (t) d t=[-\cos (t)]_{0}^{2 \pi}=-\cos (2 \pi)-(-\cos (0))=-1-(-1)=0
$$

(b) (8 points) Find the total distance traveled from $t=0$ to $t=2 \pi$.

Answer:

(b)

$$
\begin{aligned}
\int_{0}^{2 \pi}|\sin (t)| d t & =\int_{0}^{\pi} \sin (t) d t-\int_{\pi}^{2 \pi} \sin (t) d t \\
& =[-\cos (t)]_{0}^{\pi}-[-\cos (t)]_{\pi}^{2 \pi} \\
& =(-\cos (\pi)-(-\cos (0)))-(-\cos (2 \pi)-(-\cos (\pi))) \\
& =(1+1)-(-1-1)=4
\end{aligned}
$$

4. (12 points)

Find the area of the region bounded by the curves $x=y^{2}$ and $x=4 y$.

Answer:

To find where the two curves intersect we solve the equations simultaneously. Set $y^{2}=4 y$, which gives $y^{2}-4 y=0$ or $y(y-4)=0$ so $y=0$ or $y=4$. The points of intersection are thus $(0,0)$ and $(16,4)$. For $0 \leq y \leq 4$ we see that $4 y$ is larger than y^{2} and thus we get that
the area between the two curves is

$$
\int_{0}^{4}\left(4 y-y^{2}\right) d y=\left[2 y^{2}-\frac{1}{3} y^{3}\right]_{0}^{4}=\left(2 \cdot 4^{2}-\frac{1}{3} \cdot 4^{3}\right)-\left(2 \cdot 0^{2}-\frac{1}{3} \cdot 0\right)=\frac{32}{3}
$$

5. (16 points) Consider the region enclosed by the three curves $y=x^{2}, x=2$ and $y=0$.
(a) (8 points) Set up a definite integral that represents the volume of the solid obtained by rotating this region about $y=7$. Do NOT evaluate the integral.

Answer:

(a) If you choose to use the method of washers you get

$$
\int_{0}^{2}\left(\pi \cdot 7^{2}-\pi\left(7-x^{2}\right)^{2}\right) d x
$$

If you choose to use the method of cylindrical shells you get

$$
\int_{0}^{4} 2 \pi(7-y)(2-\sqrt{y}) d y
$$

(b) (8 points) Set up a definite integral that represents the volume of the solid obtained by rotating this region about $x=-1$. Do NOT evaluate the integral.

Answer:

(b) If you choose to use the method of cylindrical shells you get

$$
\int_{0}^{2} 2 \pi(x-(-1)) x^{2} d x
$$

If you choose to use the method of washers you get

$$
\int_{0}^{4}\left(\pi \cdot(2-(-1))^{2}-\pi(\sqrt{y}-(-1))^{2}\right) d y
$$

