MATH 142

Midterm 2

Apr 1, 2014

NAME (please print legibly):
Your University ID Number:
Circle your Instructor's Name along with the Lecture Time:

$$
\begin{array}{cc}
\text { Yoonbok Lee (MWF 9:00) } & \text { Dillon Ethier (MWF 12:00) } \\
\text { Carl Mueller (MWF 1:00) } & \text { Eyvindur Palsson (TR 2:00) }
\end{array}
$$

- No calculators are allowed on this exam.
- Please show all your work. You may use back pages if necessary. You may not receive full credit for a correct answer if there is no work shown.
- Please put your simplified final answers in the spaces provided.

QUESTION	VALUE	SCORE
1	8	
2	48	
3	16	
4	12	
5	16	
TOTAL	100	

1. (8 points)

Find

$$
\frac{d}{d x} \int_{1}^{x^{3}} \cos t d t
$$

ANSWER: \qquad
2. (48 points) Evaluate the following integrals.
(a) (8 points)

$$
\int_{0}^{1}\left(3 \sqrt{x}-\frac{2}{1+x^{2}}\right) d x
$$

\qquad
(b) (8 points)

$$
\int \frac{\sin \theta}{\cos ^{2} \theta} d \theta
$$

ANSWER: \qquad
(c) (8 points)

$$
\int x^{3}\left(5-x^{2}\right) d x
$$

ANSWER: \qquad
(d) (8 points)

$$
\int \frac{1}{x^{2} \sqrt{1+1 / x}} d x
$$

ANSWER: \qquad
(e) (8 points)

$$
\int_{0}^{2} 2 e^{x / 2} d x
$$

(f) (8 points)

$$
\int_{-1}^{1}\left|x^{2}-x\right| d x
$$

ANSWER:
3. (16 points) An object is moving in such a way that its velocity function at time t is given by $v(t)=\sin (t)$.
(a) (8 points) Find the displacement from $t=0$ to $t=2 \pi$.

ANSWER:
(b) (8 points) Find the total distance traveled from $t=0$ to $t=2 \pi$.

ANSWER: \qquad

4. (12 points)

Find the area of the region bounded by the curves $x=y^{2}$ and $x=4 y$.
5. (16 points) Consider the region enclosed by the three curves $y=x^{2}, x=2$ and $y=0$.
(a) (8 points) Set up a definite integral that represents the volume of the solid obtained by rotating this region about $y=7$. Do NOT evaluate the integral.

ANSWER:
(b) (8 points) Set up a definite integral that represents the volume of the solid obtained by rotating this region about $x=-1$. Do NOT evaluate the integral.

ANSWER:

