MATH 142

Midterm 1 ANSWERS

February 26, 2014

1. (24 points)

(a), (6 points) Find the vertical and horizontal asymptotes of

$$
f(x)=\frac{2 x^{2}+x+1}{x^{2}-2}
$$

Answer:

(a) The denominator factors into $(x-\sqrt{2})(x+\sqrt{2})$. Therefore the function has vertical asymptotes at $x=\sqrt{2}$ and $x=-\sqrt{2}$.

To find the horizontal asymptotes, we let $x \rightarrow \infty$ and $x \rightarrow-\infty$. Factoring out the leading term x^{2} from both numerator and denominator, we find

$$
\lim _{x \rightarrow \infty} \frac{2 x^{2}+x+1}{x^{2}-2}=\lim _{x \rightarrow \infty} \frac{x^{2}}{x^{2}} \cdot \frac{2+(1 / x)+\left(1 / x^{2}\right)}{1-\left(2 / x^{2}\right)}=2
$$

So there is a horizontal asymptote and $y=2$ as $x \rightarrow \infty$. A similar calculation shows that there is a horizontal asymptote at $y=2$ as $x \rightarrow-\infty$.
(b), (6 points) Does the following function have any symmetry? If so, what kind of symmetry does it have?

$$
f(x)=\frac{\sin (x)}{2+\cos (x)}-x^{3}
$$

Answer:

(b) Plugging in $-x$, we find that

$$
f(-x)=\frac{\sin (-x)}{2+\cos (-x)}-(-x)^{3}
$$

Note that $\sin (x)$ and x^{3} are odd functions, but $\cos (x)$ is even. Therefore,

$$
f(-x)=\frac{-\sin (x)}{2+\cos (x)}+x^{3}=-\frac{\sin (x)}{2+\cos (x)}+x^{3}=-f(x)
$$

and therefore the function is symmetric with odd symmetry.
(c), (6 points) Find the intervals of increase and decrease for the following function. Then find the points x where the function has a local maximum or local minimum.

$$
f(x)=\frac{x^{5}}{5}-\frac{4 x^{3}}{3}+\frac{7}{2}
$$

Answer:

(c) Note that

$$
f^{\prime}(x)=x^{4}-4 x^{2}=x^{2}(x-2)(x+2)
$$

The critical points are at $x=-2,0,2$. These divide the x-axis into four intervals: $(-\infty,-2)$, $(-2,0),(0,2)$ and $(2, \infty)$. Checking the sign of $f^{\prime}(x)$ at representative points on these intervals, we find that $(-\infty,-2)$ and $(2, \infty)$ are intervals of increase, while $(-2,0)$ and $(0,2)$ are intervals of decrease. The first derivative test then tells us that $f(x)$ has a local maximum at $x=-2$ and a local minimum at $x=2$.
(d), (6 points) Using the same function $f(x)$ as in part (c), find the intervals on which the function is concave up and concave down, and find the points of inflection.

Answer:

(d) Note that

$$
f^{\prime \prime}(x)=4 x^{3}-8 x=4 x\left(x^{2}-2\right)=4 x(x-\sqrt{2})(x+\sqrt{2})
$$

So $f^{\prime \prime}(x)=0$ at $x=-\sqrt{2}, x=0$, and $x=\sqrt{2}$. These points divide the x-axis into the intervals $(-\infty,-\sqrt{2}),(-\sqrt{2}, 0),(0, \sqrt{2})$, and $(\sqrt{2}, \infty)$. Checking the sign of $f^{\prime \prime}(x)$ at representative points on these intervals, we find that $f^{\prime \prime}(x)>0$ on $(-\sqrt{2}, 0)$ and $(\sqrt{2}, \infty)$, so f is concave up on these intervals. Also, $f^{\prime \prime}(x)<0$ on $(-\infty,-\sqrt{2})$ and $(0, \sqrt{2})$, so f is concave down on these intervals. Since the concavity changes sign at $x=-\sqrt{2}, x=0$, and at $x=\sqrt{2}$, all three of these points are points of inflection.

2. (21 points)

Suppose a box with an open top is to be made by cutting squares out of the corners of a 12 foot by 12 foot square piece of cardboard, then folding up the flaps to make sides. What is the maximum volume of such a box?

Answer:

Let x denote the side length of the square that is cut out. The volume is then $V(x)=$ $x(12-2 x)^{2}=4 x^{3}-48 x^{2}+144 x$. Taking the derivative, $V^{\prime}(x)=12 x^{2}-96 x+144=$ $12\left(x^{2}-8 x+12\right)=12(x-2)(x-6)$. We can see from the first derivative test that $x=2$ is a local max, and is also a global max since at the endpoints $x=0,6$, the volume is 0 . Thus the maximum volume is $V(2)=2(12-2(2))^{2}=2(8)^{2}=128$ cubic feet.
3. (15 points) Find the antiderivatives of the following functions.
(a), (5 points)

$$
\frac{x^{3}-4 x}{x^{3 / 2}}, \quad \text { for } x>0
$$

Answer:

(a) First we simplify.

$$
\frac{x^{3}-4 x}{x^{3 / 2}}=x^{3 / 2}-4 x^{-1 / 2}
$$

Then we compute the antiderivative:

$$
\frac{2}{5} x^{5 / 2}-8 x^{1 / 2}+C
$$

(b), (5 points)

$$
2 \sin (x)-x^{2}
$$

Answer:
(b)

$$
-2 \cos (x)-\frac{x^{3}}{3}+C
$$

(c), (5 points)

$$
2 e^{x / 2}
$$

Answer:

(c)

$$
4 e^{x / 2}+C
$$

4. (20 points)

Evaluate the following definite integrals:
(a), (10 points)

$$
\int_{0}^{3} \sqrt{9-x^{2}} d x
$$

Answer:

(a) This is a quarter circle with radius 3 , so it has area $\pi(3)^{2} / 4=9 \pi / 4$.
(b), (10 points)

$$
\int_{-2}^{1}(|x|-1) d x
$$

Answer:

(b) The graph consists of a triangle above the x-axis with base and height 1 , and a triangle below the x-axis with base 2 and height 1 , thus the integral is $\frac{1}{2}(1)(1)-\frac{1}{2}(2)(1)=-\frac{1}{2}$
5. (20 points) Consider the integral

$$
\int_{1}^{3} e^{\sqrt{x}} d x
$$

Write a Riemann sum for this integral. Assume that the partition has $n=4$ subintervals of equal length, and the points x_{i}^{*} are at the midpoint of each interval. Just write down the Riemann sum, and do not try to evaluate the integral.

Answer:

The interval of integration is $[1,3]$, and the subintervals are $[1,3 / 2],[3 / 2,2],[2,5 / 2],[5 / 2,3]$. The length of each subinterval is $\Delta x=1 / 2$, and the midpoints are $5 / 4,7 / 4,9 / 4,11 / 4$.

Therefore the Riemann sum is

$$
\begin{aligned}
\sum_{i=1}^{4} f\left(x_{i}^{*}\right) \Delta x= & e^{\sqrt{5 / 4}} \cdot(1 / 2)+e^{\sqrt{7 / 4}} \cdot(1 / 2) \\
& +e^{\sqrt{9 / 4}} \cdot(1 / 2)+e^{\sqrt{11 / 4}} \cdot(1 / 2)
\end{aligned}
$$

