MATH 142

Midterm 1 Feb 25, 2014

NAME (please print legibly): ______ Your University ID Number: ______ Circle your Instructor's Name along with the Lecture Time:

Yoonbok Lee (MWF 9:00)Dillon Ethier (MWF 12:00)Carl Mueller (MWF 1:00)Eyvindur Palsson (TR 2:00)

- No calculators are allowed on this exam.
- Please show all your work. You may use back pages if necessary. You may not receive full credit for a correct answer if there is no work shown.
- Please put your simplified final answers in the spaces provided.

QUESTION	VALUE	SCORE
1	24	
2	21	
3	15	
4	20	
5	20	
TOTAL	100	

1. (24 points)

(a), (6 points) Find the vertical and horizontal asymptotes of

$$f(x) = \frac{2x^2 + x + 1}{x^2 - 2}.$$

ANSWER: _____

(b), (6 points) Does the following function have any symmetry? If so, what kind of symmetry does it have?

$$f(x) = \frac{\sin(x)}{2 + \cos(x)} - x^3$$

(c), (6 points) Find the intervals of increase and decrease for the following function. Then find the points x where the function has a local maximum or local minimum.

$$f(x) = \frac{x^5}{5} - \frac{4x^3}{3} + \frac{7}{2}$$

ANSWER: _____

(d), (6 points) Using the same function f(x) as in part (c), find the intervals on which the function is concave up and concave down, and find the points of inflection.

2. (21 points)

Suppose a box with an open top is to be made by cutting squares out of the corners of a 12 foot by 12 foot square piece of cardboard, then folding up the flaps to make sides. What is the maximum volume of such a box?

- 3. (15 points) Find the antiderivatives of the following functions.
- (a), (5 points)

$$\frac{x^3 - 4x}{x^{3/2}}, \qquad \text{for } x > 0.$$

(b), (5 points)

 $2\sin(x) - x^2$

(c), (5 points)

ANSWER: _____

 $2e^{x/2}$

4. (20 points)

Evaluate the following definite integrals:

(a), (10 points)

$$\int_{0}^{3} \sqrt{9 - x^2} dx$$

ANSWER: _____

(b), (10 points)

$$\int_{-2}^{1} \left(|x| - 1 \right) dx$$

5. (20 points) Consider the integral

$$\int_{1}^{3} e^{\sqrt{x}} dx$$

Write a Riemann sum for this integral. Assume that the partition has n = 4 subintervals of equal length, and the points x_i^* are at the midpoint of each interval. Just write down the Riemann sum, and do not try to evaluate the integral.