MATH 142

Midterm 1

Feb 25, 2014

NAME (please print legibly):
Your University ID Number:
Circle your Instructor's Name along with the Lecture Time:

$$
\begin{array}{cc}
\text { Yoonbok Lee (MWF 9:00) } & \text { Dillon Ethier (MWF 12:00) } \\
\text { Carl Mueller (MWF 1:00) } & \text { Eyvindur Palsson (TR 2:00) }
\end{array}
$$

- No calculators are allowed on this exam.
- Please show all your work. You may use back pages if necessary. You may not receive full credit for a correct answer if there is no work shown.
- Please put your simplified final answers in the spaces provided.

QUESTION	VALUE	SCORE
1	24	
2	21	
3	15	
4	20	
5	20	
TOTAL	100	

1. (24 points)

(a), (6 points) Find the vertical and horizontal asymptotes of

$$
f(x)=\frac{2 x^{2}+x+1}{x^{2}-2}
$$

ANSWER:
(b), (6 points) Does the following function have any symmetry? If so, what kind of symmetry does it have?

$$
f(x)=\frac{\sin (x)}{2+\cos (x)}-x^{3}
$$

ANSWER: \qquad
(c), (6 points) Find the intervals of increase and decrease for the following function. Then find the points x where the function has a local maximum or local minimum.

$$
f(x)=\frac{x^{5}}{5}-\frac{4 x^{3}}{3}+\frac{7}{2}
$$

ANSWER:

(d), (6 points) Using the same function $f(x)$ as in part (c), find the intervals on which the function is concave up and concave down, and find the points of inflection.

ANSWER: \qquad

2. (21 points)

Suppose a box with an open top is to be made by cutting squares out of the corners of a 12 foot by 12 foot square piece of cardboard, then folding up the flaps to make sides. What is the maximum volume of such a box?

ANSWER: \qquad
3. (15 points) Find the antiderivatives of the following functions.
(a), (5 points)

$$
\frac{x^{3}-4 x}{x^{3 / 2}}, \quad \text { for } x>0
$$

ANSWER:
(b), (5 points)

$$
2 \sin (x)-x^{2}
$$

ANSWER:
(c), (5 points)

$$
2 e^{x / 2}
$$

4. (20 points)

Evaluate the following definite integrals:
(a), (10 points)

$$
\int_{0}^{3} \sqrt{9-x^{2}} d x
$$

ANSWER: \qquad
(b), (10 points)

$$
\int_{-2}^{1}(|x|-1) d x
$$

ANSWER: \qquad
5. (20 points) Consider the integral

$$
\int_{1}^{3} e^{\sqrt{x}} d x
$$

Write a Riemann sum for this integral. Assume that the partition has $n=4$ subintervals of equal length, and the points x_{i}^{*} are at the midpoint of each interval. Just write down the Riemann sum, and do not try to evaluate the integral.

ANSWER:

