MATH 142

Final ANSWERS

May 6, 2014

Part A

1. (24 points)
(a), (6 points) Find the vertical and horizontal asymptotes of

$$
f(x)=\frac{3 x^{2}+2 x+4}{2 x^{2}+x-1}
$$

Answer:

(a) The denominator factors into $(2 x-1)(x+1)$. Therefore the function has vertical asymptotes at $x=\frac{1}{2}$ and $x=-1$.

To find the horizontal asymptotes, we let $x \rightarrow \infty$ and $x \rightarrow-\infty$. Factoring out the leading term x^{2} from both numerator and denominator, we find

$$
\lim _{x \rightarrow \infty} \frac{3 x^{2}+2 x+4}{2 x^{2}+x-1}=\lim _{x \rightarrow \infty} \frac{x^{2}}{x^{2}} \cdot \frac{3+(2 / x)+\left(4 / x^{2}\right)}{2+(1 / x)-\left(1 / x^{2}\right)}=\frac{3}{2}
$$

So $y=\frac{3}{2}$ is a horizontal asymptote as $x \rightarrow \infty$. A similar calculation shows that $y=\frac{3}{2}$ is a horizontal asymptote as $x \rightarrow-\infty$.
(b), (6 points) Does the following function have any symmetry? If so, what kind of symmetry does it have?

$$
f(x)=\frac{x^{3} \sin (x)}{2+x^{2}}-e^{x^{2}}
$$

Answer:

(b) Plugging in $-x$, we find that

$$
f(-x)=\frac{(-x)^{3} \sin (-x)}{2+(-x)^{2}}-e^{(-x)^{2}}
$$

Note that $\sin (x)$ and x^{3} are odd functions, but x^{2} is even. Therefore,

$$
f(-x)=\frac{(-1) x^{3}(-1) \sin (x)}{2+x^{2}}-e^{x^{2}}=\frac{\sin (x) x^{3}}{2+x^{2}}-e^{x^{2}}=f(x)
$$

and therefore the function is symmetric with an even symmetry.
(c), (6 points) Find the intervals of increase and decrease for the following function. Then find the points x where the function has a local maximum or local minimum.

$$
f(x)=\frac{2}{3} x^{3}-\frac{3}{2} x^{2}-2 x+5
$$

Answer:

(c) Note that

$$
f^{\prime}(x)=2 x^{2}-3 x-2=(2 x+1)(x-2)
$$

The critical points are at $x=-\frac{1}{2}, 2$. These divide the x-axis into three intervals: $\left(-\infty,-\frac{1}{2}\right)$, $\left(-\frac{1}{2}, 2\right)$ and $(2, \infty)$. Checking the sign of $f^{\prime}(x)$ at representative points on these intervals, we find that $\left(-\infty,-\frac{1}{2}\right)$ and $(2, \infty)$ are intervals of increase, while $\left(-\frac{1}{2}, 2\right)$ is an interval of decrease. The first derivative test then tells us that $f(x)$ has a local maximum at $x=-\frac{1}{2}$ and a local minimum at $x=2$.
(d), (6 points) Using the same function $f(x)$ as in part (c), find the intervals on which the function is concave up and concave down, and find the points of inflection.

Answer:

(d) Note that

$$
f^{\prime \prime}(x)=4 x-3
$$

So $f^{\prime \prime}(x)=0$ at $x=\frac{3}{4}$. This point divides the x-axis into the intervals $\left(-\infty, \frac{3}{4}\right)$ and $\left(\frac{3}{4}, \infty\right)$. Checking the sign of $f^{\prime \prime}(x)$ at representative points on these intervals, we find that $f^{\prime \prime}(x)>0$ on $\left(\frac{3}{4}, \infty\right)$ so f is concave up on this interval. Also, $f^{\prime \prime}(x)<0$ on $\left(-\infty, \frac{3}{4}\right)$ so f is concave down on this interval. Since the concavity changes sign at $x=\frac{3}{4}$ then it is a point of inflection.
2. (15 points) A rectangle is inscribed with its base on the x-axis and its upper corners on the parabola $y=9-x^{2}$ above the x-axis. What are the dimensions of such a rectangle with the greatest possible area?

Answer:

Let x be the x-coordinate of the right side of a rectangle, so $0 \leq x \leq 3$. The width is $2 x$ and the height is $9-x^{2}$ and thus the area is $A(x)=2 x\left(9-x^{2}\right)$. To find the maximum area, solve $A^{\prime}(x)=18-6 x^{2}=0$, then $x=\sqrt{3}$. Since $A^{\prime \prime}(\sqrt{3})=-12 \sqrt{3}<0, A(x)$ has its maximum at $x=\sqrt{3}$. Thus, the width is $2 \sqrt{3}$ and the height is 6 .

3. (19 points)

Evaluate the following integrals.
(a) (6 points)

$$
\int x \sec ^{2}\left(x^{2}+1\right) d x
$$

Answer:

We use the substitution $u=x^{2}+1, d u=2 x d x$. Then

$$
\begin{aligned}
\int x \sec ^{2}\left(x^{2}+1\right) d x & =\frac{1}{2} \int \sec ^{2}(u) d u \\
& =\frac{1}{2} \tan (u)+C \\
& =\frac{1}{2} \tan \left(x^{2}+1\right)+C
\end{aligned}
$$

(b) (7 points)

$$
\int(x+1)^{555} x^{2} d x
$$

Answer:

We use the substitution $u=x+1, d u=d x$. Since $x=u-1$, we have

$$
\begin{aligned}
\int(x+1)^{555} x^{2} d x & =\int u^{555}(u-1)^{2} d u \\
& =\int u^{555}\left(u^{2}-2 u+1\right) d u \\
& =\int\left(u^{557}-2 u^{556}+u^{555}\right) d u \\
& =\frac{u^{558}}{558}-2 \frac{u^{557}}{557}+\frac{u^{556}}{556}+C \\
& =\frac{(x+1)^{558}}{558}-2 \frac{(x+1)^{557}}{557}+\frac{(x+1)^{556}}{556}+C .
\end{aligned}
$$

(c) (6 points)

$$
\int_{0}^{\pi} \sin (x) e^{\cos (x)} d x
$$

Answer:

We use the substitution $u=\cos (x), d u=-\sin (x) d x$.

$$
\begin{aligned}
\int_{x=0}^{x=\pi} \sin (x) e^{\cos (x)} d x & =-\int_{u=1}^{u=-1} e^{u} d u \\
& =-\left.e^{u}\right|_{u=-1} ^{u=-1} \\
& =-e^{-1}+e^{1}
\end{aligned}
$$

4. (12 points) Find the area enclosed by the curves $y=6 x^{2}$ and $y=2 x^{3}$

Answer:

(a) To find the points of intersection, set these functions equal and solve: $6 x^{2}=2 x^{3}$ gives $x=0,3$ as solutions. On $(0,3), 6 x^{2}>2 x^{3}$ (one can see this by observing that $6 x^{2}-2 x^{3}=$ $2 x^{2}(3-x)$, which is positive on the indicated region), so the integral representing the area is given by

$$
\int_{0}^{3}\left(6 x^{2}-2 x^{3}\right) d x=\left.\left[2 x^{3}-\frac{1}{2} x^{4}\right]\right|_{0} ^{3}=54-\frac{81}{2}=\frac{27}{2} .
$$

5. (15 points) Find the volume of the solid obtained by rotating the region in the first quadrant bounded by $y=x^{3}, y=x$ about the line $y=4$ using the method of discs or washers.

Answer:

$$
\begin{aligned}
V & =\int_{0}^{1}\left(\pi\left(4-x^{3}\right)^{2}-\pi(4-x)^{2}\right) d x \\
& =\pi \int_{0}^{1}\left(\left(16-8 x^{3}+x^{6}\right)-\left(16-8 x+x^{2}\right)\right) d x \\
& =\pi \int_{0}^{1}\left(x^{6}-8 x^{3}-x^{2}+8 x\right) d x \\
& =\pi\left[\left(\frac{1}{7} x^{7}-2 x^{4}-\frac{1}{3} x^{3}+4 x^{2}\right)\right]_{0}^{1} \\
& =\frac{38 \pi}{21}
\end{aligned}
$$

6. (15 points) Find the volume of the solid obtained by rotating the region bounded by $y=1-x^{2}, y=0$ about the line $x=2$ using cylindrical shells.

Answer:

$$
\begin{aligned}
V & =\int_{-1}^{1} 2 \pi(2-x)\left(1-x^{2}\right) d x \\
& =\int_{-1}^{1} 2 \pi\left(2-x-2 x^{2}+x^{3}\right) d x \\
& =\left[2 \pi\left(2 x-\frac{1}{2} x^{2}-\frac{2}{3} x^{3}+\frac{1}{4} x^{4}\right)\right]_{-1}^{1} \\
& =\frac{16 \pi}{3}
\end{aligned}
$$

Part B

1. (19 points) The great pyramid of Giza is approximately 140 meters high, and the base is a square of side length approximately 440 meters. Suppose that Egypt's ruling generals decide to hollow out the pyramid and use it as a water tower. Compute the work required to pump water from the base of the pyramid until it completely fills the space available.

Since you are not allowed to have a calculator, you do not have to completely simplify your answer.

Hint: Let x be the distance from the top of the pyramid. A horizontal slice of the pyramid at position x is a square, and by using some geometry you can compute the side length of this square as a function of x.

Answer:

Define x as in the hint, and recall that the density of water is 1000 kg per cubic meter. Since we are working in the metric system, we must use the gravitational constant $g=9.8$.

Let $L=L(x)$ be the side length of a square slice at distance x below the top. Using similar triangles, we compute

$$
\frac{L}{x}=\frac{440}{140}, \quad L=\frac{440}{140} x .
$$

and so the volume of the slice is

$$
L^{2} d x=\left(\frac{440}{140}\right)^{2} x^{2} d x
$$

The mass of the slice is

$$
1000\left(\frac{440}{140}\right)^{2} x^{2} d x
$$

and the force on the slice is the mass multiplied by 9.8 , giving

$$
9800\left(\frac{440}{140}\right)^{2} x^{2} d x
$$

The distance of the slice from the bottom is $140-x$, so the work required to fill the slice is

$$
9800\left(\frac{440}{140}\right)^{2} x^{2}(140-x) d x=9800\left(\frac{440}{140}\right)^{2}\left(140 x^{2}-x^{3}\right) d x
$$

Finally, the total work required, in Joules, is

$$
\begin{aligned}
\int_{0}^{140} 9800\left(\frac{440}{140}\right)^{2}\left(140 x^{2}-x^{3}\right) d x & =\left.9800\left(\frac{440}{140}\right)^{2}\left(\frac{140 x^{3}}{3}-\frac{x^{4}}{4}\right)\right|_{0} ^{140} \\
& =9800\left(\frac{440}{140}\right)^{2}\left(\frac{140^{4}}{3}-\frac{140^{4}}{4}\right) \\
& =9800 \cdot 440^{2} \cdot \frac{140^{2}}{12}
\end{aligned}
$$

2. (22 points) (a) (11 points) Evaluate

$$
\int_{0}^{\pi} x \sin (2 x) d x
$$

Answer:

We use integration by parts, setting $u=x, d v=\sin (2 x) d x$. Then $d u=d x, v=\frac{-1}{2} \cos (2 x)$, and we have

$$
\begin{aligned}
\int_{0}^{\pi} x \sin (2 x) d x & =\left[\frac{-x}{2} \cos (2 x)\right]_{0}^{\pi}-\int_{0}^{\pi} \frac{-1}{2} \cos (2 x) d x \\
& =\frac{-\pi}{2}+\frac{1}{2}\left[\frac{\sin (2 x)}{2}\right]_{0}^{\pi} \\
& =\frac{-\pi}{2}
\end{aligned}
$$

(b) (11 points) Evaluate

$$
\int x^{2} e^{3 x} d x
$$

Answer:

We use integration by parts, setting $u=x^{2}, d v=e^{3 x}$. Then $d u=2 x d x, v=\frac{1}{3} e^{3 x}$, and we have

$$
\int x^{2} e^{3 x} d x=\frac{x^{2}}{3} e^{3 x}-\frac{2}{3} \int x e^{3 x} d x
$$

We now apply integration by parts again for $\int x e^{3 x} d x$, setting $u=x$ and $d v=e^{3 x} d x$. Then $d u=d x$ and $v=\frac{1}{3} e^{3 x}$, and we have

$$
\int x e^{3 x} d x=\frac{x}{3} e^{3 x}-\frac{1}{3} \int e^{3 x} d x=\frac{x}{3} e^{3 x}-\frac{1}{9} e^{3 x}
$$

Plugging this into the previous, we have

$$
\int x^{2} e^{3 x} d x=\frac{x^{2}}{3} e^{3 x}-\frac{2 x}{9} e^{3 x}+\frac{2}{27} e^{3 x}+C .
$$

3. (13 points) Evaluate the integral

$$
\int \sec ^{4}(\theta) d \theta
$$

Answer:

$$
\int \sec ^{4}(\theta) d \theta=\int \sec ^{2}(\theta) \cdot \sec ^{2}(\theta) d \theta=\int\left(1+\tan ^{2}(\theta)\right) \sec ^{2}(\theta) d \theta
$$

We then use the substitution $u=\tan (\theta), d u=\sec ^{2}(\theta) d \theta$ and obtain

$$
=\int\left(1+u^{2}\right) d u=u+\frac{1}{3} u^{3}+C=\tan (\theta)+\frac{1}{3} \tan ^{3}(\theta)+C .
$$

4. (13 points) Evaluate the integral

$$
\int_{0}^{\sqrt{3} / 2} \frac{x^{3}}{\sqrt{1-x^{2}}} d x
$$

Answer:

We first use the trig. sub. $x=\sin \theta, d x=\cos \theta d \theta$ and $\sqrt{1-x^{2}}=\cos \theta$. Then

$$
\int_{0}^{\sqrt{3} / 2} \frac{x^{3}}{\sqrt{1-x^{2}}} d x=\int_{0}^{\pi / 3} \frac{\sin ^{3} \theta}{\cos \theta} \cos \theta d \theta=\int_{0}^{\pi / 3} \sin ^{3} \theta d \theta
$$

By another substitution $u=\cos \theta, d u=-\sin \theta d \theta$ and $\sin ^{2} \theta=1-\cos ^{2} \theta=1-u^{2}$, we obtain

$$
=-\int_{1}^{1 / 2}\left(1-u^{2}\right) d u=\left[-u+\frac{1}{3} u^{3}\right]_{1}^{1 / 2}=5 / 24
$$

5. (22 points)

Evaluate the following integrals.
(a) (11 points)

$$
\int \frac{1}{2 x^{2}-7 x-15} d x
$$

Answer:

First we factor $2 x^{2}-7 x-15=(2 x+3)(x-5)$. We must find A and B such that

$$
\frac{1}{(2 x+3)(x-5)}=\frac{A}{2 x+3}+\frac{B}{x-5}
$$

Finding a common denominator, we compute

$$
\frac{1}{(2 x+3)(x-5)}=\frac{A(x-5)+B(2 x+3)}{(2 x+3)(x-5)}
$$

and so

$$
1=A(x-5)+B(2 x+3)
$$

Setting $x=5$ we find $1=13 B$, so $B=1 / 13$. Setting $x=-3 / 2$, we get $1=-(13 / 2) A$ and so $A=-2 / 13$. Thus,

$$
\begin{aligned}
\int \frac{1}{2 x^{2}-7 x-15} d x & =\int \frac{1}{(2 x+3)(x-5)} d x \\
& =-\frac{2}{13} \int \frac{1}{2 x+3} d x+\frac{1}{13} \int \frac{1}{x-5} d x \\
& =-\frac{2}{13} \cdot \frac{1}{2} \ln |2 x+3|+\frac{1}{13} \ln |x-5|+C \\
& =-\frac{1}{13} \ln |2 x+3|+\frac{1}{13} \ln |x-5|+C
\end{aligned}
$$

(b) (11 points)

$$
\int \frac{x^{2}+2 x+2}{x-2} d x
$$

Answer:

Since the degree of the numerator is greater than or equal to the degree of the denominator, we must do long division of polynomials. This gives

$$
\frac{x^{2}+2 x+2}{x-2}=x+4+\frac{10}{x-2}
$$

and so

$$
\begin{aligned}
\int \frac{x^{2}+2 x+2}{x-2} d x & =\int(x+4) d x+10 \int \frac{1}{x-2} d x \\
& =\frac{x^{2}}{2}+4 x+10 \ln |x-2|+C
\end{aligned}
$$

6. (11 points) Find the arc length of the curve $y=2(x-1)^{\frac{3}{2}}$ for $1 \leq x \leq 3$.

Answer:
$y^{\prime}=\frac{3}{2} \cdot 2 \sqrt{x-1}=3 \sqrt{x-1}$, so the arc length is given by

$$
\begin{aligned}
\int_{1}^{3} \sqrt{1+9(x-1)} d x & =\int_{1}^{3}(9 x-8)^{1 / 2} d x \\
& =\left.\left[\frac{2}{3} \cdot \frac{1}{9}(9 x-8)^{\frac{3}{2}}\right]\right|_{1} ^{3} \\
& =\frac{2}{27}\left(19^{\frac{3}{2}}-1^{\frac{3}{2}}\right) \\
& =\frac{2}{27}\left(19^{\frac{3}{2}}-1\right)
\end{aligned}
$$

