MATH 142

Final

May 5, 2014

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Circle your Instructor's Name along with the Lecture Time:

$$
\begin{array}{cc}
\text { Yoonbok Lee (MWF 9:00) } & \text { Dillon Ethier (MWF 12:00) } \\
\text { Carl Mueller (MWF 1:00) } & \text { Eyvindur Palsson (TR 2:00) }
\end{array}
$$

- No calculators are allowed on this exam.
- Your score on part A can make up for a bad midterm. But part A counts towards your score on the final, so please do not skip part A, even if you're satisfied with your midterm scores.
- Please show all your work. You may use back pages if necessary. You may not receive full credit for a correct answer if there is no work shown.
- Please put your simplified final answers in the spaces provided.

Part A		
QUESTION	VALUE	SCORE
1	24	
2	15	
3	19	
4	12	
5	15	
6	15	
TOTAL	100	

Part B		
QUESTION	VALUE	SCORE
1	19	
2	22	
3	13	
4	13	
5	22	
6	11	
TOTAL	100	

Part A

1. (24 points)

(a), (6 points) Find the vertical and horizontal asymptotes of

$$
f(x)=\frac{3 x^{2}+2 x+4}{2 x^{2}+x-1}
$$

ANSWER:
(b), (6 points) Does the following function have any symmetry? If so, what kind of symmetry does it have?

$$
f(x)=\frac{x^{3} \sin (x)}{2+x^{2}}-e^{x^{2}}
$$

ANSWER: \qquad
(c), (6 points) Find the intervals of increase and decrease for the following function. Then find the points x where the function has a local maximum or local minimum.

$$
f(x)=\frac{2}{3} x^{3}-\frac{3}{2} x^{2}-2 x+5
$$

ANSWER:
(d), (6 points) Using the same function $f(x)$ as in part (c), find the intervals on which the function is concave up and concave down, and find the points of inflection.

ANSWER: \qquad
2. (15 points) A rectangle is inscribed with its base on the x-axis and its upper corners on the parabola $y=9-x^{2}$ above the x-axis. What are the dimensions of such a rectangle with the greatest possible area?

ANSWER:
3. (19 points)

Evaluate the following integrals.
(a) (6 points)

$$
\int x \sec ^{2}\left(x^{2}+1\right) d x
$$

ANSWER:
(b) (7 points)

$$
\int(x+1)^{555} x^{2} d x
$$

ANSWER: \qquad
(c) (6 points)

$$
\int_{0}^{\pi} \sin (x) e^{\cos (x)} d x
$$

ANSWER:
4. (12 points) Find the area enclosed by the curves $y=6 x^{2}$ and $y=2 x^{3}$

ANSWER:

5. (15 points) Find the volume of the solid obtained by rotating the region in the first quadrant bounded by $y=x^{3}, y=x$ about the line $y=4$ using the method of discs or washers.

ANSWER: \qquad
6. (15 points) Find the volume of the solid obtained by rotating the region bounded by $y=1-x^{2}, y=0$ about the line $x=2$ using cylindrical shells.

ANSWER:

Part B

1. (19 points) The great pyramid of Giza is approximately 140 meters high, and the base is a square of side length approximately 440 meters. Suppose that Egypt's ruling generals decide to hollow out the pyramid and use it as a water tower. Compute the work required to pump water from the base of the pyramid until it completely fills the space available.

Since you are not allowed to have a calculator, you do not have to completely simplify your answer.

Hint: Let x be the distance from the top of the pyramid. A horizontal slice of the pyramid at position x is a square, and by using some geometry you can compute the side length of this square as a function of x.
\qquad
2. (22 points) (a) (11 points) Evaluate

$$
\int_{0}^{\pi} x \sin (2 x) d x
$$

ANSWER:
(b) (11 points) Evaluate

$$
\int x^{2} e^{3 x} d x
$$

ANSWER:
3. (13 points) Evaluate the integral

$$
\int \sec ^{4}(\theta) d \theta
$$

ANSWER:
4. (13 points) Evaluate the integral

$$
\int_{0}^{\sqrt{3} / 2} \frac{x^{3}}{\sqrt{1-x^{2}}} d x
$$

ANSWER:

5. (22 points)

Evaluate the following integrals.
(a) (11 points)

$$
\int \frac{1}{2 x^{2}-7 x-15} d x
$$

ANSWER: \qquad
(b) (11 points)

$$
\int \frac{x^{2}+2 x+2}{x-2} d x
$$

\qquad
6. (11 points) Find the arc length of the curve $y=2(x-1)^{\frac{3}{2}}$ for $1 \leq x \leq 3$.

ANSWER:

