MATH 142
 MIDTERM EXAM II

April 3, 2003

1. (12 pts) Find $F^{\prime}(x)$ for F as given:
(a) $F(x)=\int_{-2}^{x} \sqrt{t^{2}-2 t+5} d t$

$$
F(x)^{\prime}=\sqrt{x^{2}-2 x+5}
$$

(b) $F(x)=\int_{0}^{x^{3}} \sec t d t$

$$
F(x)=3 x^{2} \sec \left(x^{3}\right)
$$

2. (12 pts) Evaluate the following integrals.
(a) $\int 1 d x=x+C$
(b) $\int_{-\pi / 2}^{\pi / 2} \sin ^{7} x d x=0$
since $\sin ^{7} x$ is an odd function.
(c) $\int \tan x d x$

Use substitution: $u=\cos x$, and $d u=-\sin x d x$. Then

$$
\begin{gathered}
\int \tan x d x=\int \frac{\sin x}{\cos x} d x \\
=-\int \frac{d u}{u}=-\ln |u|+c=-\ln |\cos x|+C
\end{gathered}
$$

3. (16 pts) Find the area of the region(s) bounded by the given functions:
(a) $f(x)=x^{2}-4 x+3$ $g(x)=-x^{2}+2 x+3$.

Find the intersection points of these functions.

$$
\begin{gathered}
x^{2}-4 x+3=-x^{2}+2 x+3 \\
2 x^{2}-6 x=0 \\
x=3, x=0
\end{gathered}
$$

On $[0,3], g(x) \geq f(x)$ (test it by plugging in a point). Therefore the area is

$$
\int_{0}^{3}(g(x)-f(x)) d x=\int_{0}^{3}\left(-2 x^{2}+6 x\right) d x=9
$$

(b) $y=x^{3}-2 x$
$y=2 x$.
For the intersection points, solve:

$$
\begin{gathered}
x^{3}-2 x=2 x \\
x^{3}-4 x=x\left(x^{2}-4\right)=0
\end{gathered}
$$

so $x=-2,0,2$, and there are two intervals to consider (the region is composed of two pieces).

On $[-2,0], x^{3}-2 x \geq 2 x$, while on $[0,2], 2 x \geq\left(x^{3}-2 x\right)$ (plug in test points to check).
The area is

$$
\begin{gathered}
\int_{-2}^{0}\left[\left(x^{3}-2 x\right)-2 x\right] d x+\int_{0}^{2}\left(2 x-\left(x^{3}-2 x\right)\right) d x \\
=4+4=8
\end{gathered}
$$

4. (10 pts) Find the volume of the solid obtained by rotating the region bounded by the curve $y=x^{2}$ and the line $y=x$ around the horizontal line $y=-1$.

These two curves intersect at 0 and 1 , and in $[0,1], x \geq x^{2}$.
The region has a nice top and bottom, so we can use $d x$. This will give washers. The cross-sectional area at x is

$$
A(x)=\pi(x+1)^{2}-\pi\left(x^{2}+1\right)^{2} .
$$

The volume is

$$
V=\pi \int_{0}^{1}\left((x+1)^{2}-\left(x^{2}+1\right)^{2}\right) d x=\pi \int_{0}^{1}\left(2 x-x^{4}-x^{2}\right) d x=\frac{7 \pi}{15}
$$

5. ($\mathbf{1 0} \mathbf{~ p t s}$) Find the volume of the solid obtained by rotating the region bounded by the following four lines:

$$
\text { the } x \text {-axis, } \quad y=x, \quad y=x-2, \quad \text { and the horizontal line } y=1 \text {, }
$$

around the x-axis.

The top boundary of the region is formed by two different lines. Therefore $d x$ is not ideal. The sides of the region are nice single lines, so $d y$ is a better choice. This will give cylindrical shells.
The circumference of each shell is $2 \pi(y)$, and the height is $(y+2)-y=2$. The volume is

$$
V=\int_{0}^{1} 2 \pi(y) 2 d y=4 \pi \int_{0}^{1} y d y=2 \pi
$$

6. (12 pts) A cylindrical well is 12 feet deep with a radius of 3 feet. The well contains 9 feet of water, measured from the bottom. How much work is required to pump all of the water up to ground level?
(Recall that water weighs $62.5 \mathrm{lbs} / \mathrm{ft}^{3}$.)

Divide [0, 12] into n subintervals with the same width Δx. Take a slice at x_{i}. Then the volume of this slice is $V_{i}=9 \pi \Delta x$. Hence

$$
F_{i}=62.5 V_{i}=62.5 * 9 \pi \Delta x
$$

is the weight of the slice, and

$$
W_{i} \approx F_{i}\left(12-x_{i}\right)=62.5 * 9 \pi\left(12-x_{i}\right) \Delta x .
$$

If we add up all bits of work and let $n \rightarrow \infty$, then we obtain that

$$
W=\int_{0}^{9} 62.5 * 9 \pi(12-x) d x=\left.62.5 * 9 \pi\left(12 x-\frac{x^{2}}{2}\right)\right|_{0} ^{9}=62.5 * 9 \pi * 57.5
$$

7. (12 pts) The wavelength of light emitted by supernova at time t is

$$
w(t)=\frac{t^{2}+1}{t^{2}} \text { nanometers. }
$$

Find the average wavelength between $t=1 / 2$ and $t=2$.

$$
w_{\text {ave }}(t)=\frac{1}{2-\frac{1}{2}} \int_{1 / 2}^{2} \frac{t^{2}+1}{t^{2}} d t=\frac{2}{3} \int_{1 / 2}^{2}\left(1+\frac{1}{t^{2}}\right) d t=\left.\frac{2}{3}\left(t-t^{-1}\right)\right|_{1 / 2} ^{2}=2
$$

8. (8 pts) Evaluate the following integrals.
(a) $\int_{0}^{1} x \sqrt{1-x^{2}} d x$

Use substitution: $u=1-x^{2}$ and $d u=-2 x d x$. When $x=0, u=1$, and when $x=1$, $u=0$. Thus

$$
\int_{0}^{1} x \sqrt{1-x^{2}} d x=-\frac{1}{2} \int_{1}^{0} \sqrt{u} d u=\frac{1}{3}
$$

(b) $\int t \sqrt{t-4} d t$

Use substitution: $u=t-4$ and $d u=d t$. Then

$$
\begin{aligned}
& \int t \sqrt{t-t} d t=\int(u+4) \sqrt{u} d u=\int\left(u^{3 / 2}+4 u^{1 / 2}\right) d u \\
& =\frac{2}{5} u^{5 / 2}+\frac{8}{3} u^{3 / 2}+C=\frac{2}{5}(t-4)^{5 / 2}+\frac{8}{3}(t-4)^{3 / 2}+C
\end{aligned}
$$

9. (8 pts) Evaluate the following integrals.
(a) $\int x e^{-2 x} d x$

Use integration by parts:

$$
\begin{aligned}
u & =x, & d v & =e^{-2 x} d x \\
d u & =d x, & v & =-\frac{1}{2} e^{-2 x}
\end{aligned}
$$

Then

$$
\int x e^{-2 x} d x=-\frac{1}{2} x e^{-2 x}-\int-\frac{1}{2} e^{-2 x} d x=-\frac{1}{2} x e^{-2 x}-\frac{1}{4} e^{-2 x}+C
$$

(b) $\int \ln x d x$

Use integration by parts:

$$
\begin{aligned}
& u=\ln x, \quad d v=d x \\
& d u=\frac{1}{x} d x, \quad v=x
\end{aligned}
$$

Then

$$
\int \ln x d x=x \ln x-\int x \frac{1}{x} d x=x \ln x-x+C
$$

