MATH 142

MIDTERM EXAM I SOLUTIONS

February 20, 2003

1. (15 pts) Let $f(x)=\frac{1+x^{2}}{1-x^{2}}$. Then $f^{\prime}(x)=\frac{4 x}{\left(1-x^{2}\right)^{2}}$ and $f^{\prime \prime}(x)=\frac{8 x^{2}+4}{\left(1-x^{2}\right)^{3}}$.
(a) Find the domain of f.

$$
x \neq \pm 1 \text {, i.e. }(-\infty,-1) \cup(-1,1) \cup(1, \infty)
$$

(b) Find all horizontal and vertical asymptotes of f.

There are vertical asymptotes are $x=-1$ and $x=1$, since

$$
\lim _{x \rightarrow-1^{+}} \frac{1+x^{2}}{1-x^{2}}=\frac{2}{\text { tiny pos. } \#}=\infty
$$

and

$$
\lim _{x \rightarrow 1^{-}} \frac{1+x^{2}}{1-x^{2}}=\frac{2}{\text { tiny pos. } \#}=\infty .
$$

There is a horizontal asymptote at $y=-1$, since

$$
\lim _{x \rightarrow \infty} \frac{1+x^{2}}{1-x^{2}}=-1
$$

and

$$
\lim _{x \rightarrow-\infty} \frac{1+x^{2}}{1-x^{2}}=-1
$$

\ldots Continue with $f(x)=\frac{1+x^{2}}{1-x^{2}}, f^{\prime}(x)=\frac{4 x}{\left(1-x^{2}\right)^{2}}$ and $f^{\prime \prime}(x)=\frac{8 x^{2}+4}{\left(1-x^{2}\right)^{3}}$.
(c) Find the intervals on which f is increasing and the intervals on which f is decreasing.

The denominator of $f^{\prime}(x)$ is always positive. Thus $f^{\prime}(x)>0$ when $x>0$ and $f^{\prime}(x)<0$ when $x<0$. Therefore $f(x)$ is increasing if $x>0$, and $f(x)$ is decreasing if $x<0$.
(d) Find all local extrema for f.
$f^{\prime}(x)=0$ only when $x=0$. So 0 is a critical number. $f^{\prime}(x)$ is undefined at ± 1, but these don't count as critical numbers since they're not in the domain.

Note that $f^{\prime \prime}(0)=\frac{4}{1}>0$, so by the second derivative test, $x=0$ is a local min.
(e) Find the intervals on which f is concave up and those on which it is concave down.

We need to look at the sign of $f^{\prime \prime}(x)$. The numerator of $f^{\prime \prime}(x)$ is always positive, so $f^{\prime \prime}(x)$ is never 0 . However, $f^{\prime \prime}(x)$ is undefined at ± 1. Thus there are three intervals where we have to check the sign: $(-\infty,-1),(-1,1)$, and $(1, \infty)$. We'll use $-2,0$ and 2 as test numbers:

$$
f^{\prime \prime}(-2)=\frac{36}{(-3)^{3}}<0, \quad f^{\prime \prime}(0)=4>0, \quad f^{\prime \prime}(2)=\frac{36}{(-3)^{3}}<0 .
$$

f is concave up where $f^{\prime \prime}(x)>0$, and concave down where $f^{\prime \prime}(x)<0$. Thus f is concave up on $(-1,1)$, and concave down on $(-\infty,-1) \cup(1, \infty)$.
2. (10 pts) Using the information from the previous problem, sketch the graph of

$$
y=\frac{1+x^{2}}{1-x^{2}}
$$

on the axes below. Label the coords of all max/mins and intercepts, and include the equations for all asymptotes. (On the axes below, 1 mark $=1$ unit.)
3. (10 pts) The width of a certain rectangle is four times the reciprocal of its length. What is the smallest possible value for the perimeter?
Your answer should be the perimeter, not the width!
Let x be the length and w the width. Then $w=\frac{4}{x}$.
The perimeter is $P=2 x+2 w$. Substituting, we have

$$
P(x)=2 x+\frac{8}{x}
$$

and

$$
P^{\prime}(x)=2-\frac{8}{x^{2}} .
$$

so $P^{\prime}(x)=0$ if $x=2$.
Thus $x=2$ is a critical number. We need to make sure this gives the minimum value. We always have $x \geq 0$, so there are two intervals to check: $(0,2)$ and $(2, \infty) . P^{\prime}(1)=-6<0$ and $P^{\prime}(3)=2-\frac{8}{9}>0$. Hence $x=2$ is a minimum by the first derivative test. This also shows that $x=2$ is the absolute minimum (since $P(x)$ is larger at all values to the left and right of 2).
Thus the smallest possible perimeter is $P(2)=8$.
4. (5 pts) Suppose we are trying to solve $x^{3}-x+3=0$ using Newton's method. If our first guess is $x=1$, what will our second guess be?
$f(x)=x^{3}-x+3$ and $f^{\prime}(x)=3 x^{2}-1$.
We start with $x_{1}=1$. Then

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=1-\frac{3}{3-1}=-\frac{1}{2} .
$$

5. (12 pts) A ball is thrown straight up from the top of an 80 ft building with an initial velocity of $64 \mathrm{ft} / \mathrm{sec}$. (The acceleration due to gravity is $-32 \mathrm{ft} / \mathrm{sec}^{2}$.)
(a) Find the formula for the velocity $v(t)$ at time t.
$v^{\prime}(t)=a=-32$ and $v(0)=64$. Hence $v(t)=-32 t+64$.
(b) Find the formula for the height $h(t)$ at time t. $h^{\prime}(t)=v(t)$ and $h(0)=80$, so $h(t)=-16 t^{2}+64 t+80$.
(c) When does the ball reach its highest point?
$v(t)=0$ when the ball reaches its highest point. Setting $v(t)=-32 t+64=0$, we find that $t=2$.
(d) When does the ball land on the ground?
$h(t)=0$ when the ball hits the ground. Thus $-16 t^{2}+64 t+80=0$, and we find that $t=5$ or $t=-1$. So the answer is $t=5$.
6. (12 pts) Find the most general antiderivatives for the following:
(a) $f(x)=\sqrt{x}+5 x^{2}-\frac{7}{x}$

$$
F(x)=\frac{2}{3} x^{3 / 2}+\frac{5}{3} x^{3}-7 \ln |x|+C
$$

(b) $f(x)=\frac{5}{1+x^{2}}$

$$
F(x)=5 \tan ^{-1}(x)+C
$$

(c) $f(x)=\sin (2 x)+e^{-x}$

$$
F(x)=-\frac{1}{2} \cos (2 x)-e^{-x}+C
$$

7. (12 pts) Approximate the value of the integral

$$
\int_{1}^{7}\left(x^{2}+2\right) d x
$$

using the Riemann sum with $n=3$ rectangles, using right endpoints. You don't have to simplify your answer.
$\Delta x=\frac{7-1}{3}=2$. Then

$$
R_{3}=f(3) \Delta x+f(5) \Delta x+f(7) \Delta x=11 \cdot 2+27 \cdot 2+51 \cdot 2 .
$$

8. (12 pts) Evaluate $\int_{-1}^{2}|x| d x$ by drawing a picture and computing the appropriate area.

We add the areas of the two triangles:

$$
\int_{-1}^{2}|x|=\frac{1}{2} \cdot 1 \cdot 1+\frac{1}{2} \cdot 2 \cdot 2=5 / 2
$$

9. (12 pts) Find a point on the parabola $y=x^{2}-1$ whose distance from the point $(0,3)$ is as small as possible.

Let (x, y) be any point on the curve. The distance from (x, y) to $(0,3)$ is

$$
\begin{aligned}
d & =\sqrt{(x-0)^{2}+(y-3)^{2}} \\
& =\sqrt{x^{2}+\left(x^{2}-1-3\right)^{2}} \\
& =\sqrt{x^{2}+\left(x^{2}-4\right)^{2}} .
\end{aligned}
$$

Instead of minimizing d, we know it suffices to minimize d^{2}. Set

$$
f(x)=d^{2}=(x-0)^{2}+\left(x^{2}-4\right)^{2} .
$$

Then

$$
f^{\prime}(x)=2 x+4 x\left(x^{2}-4\right)=2 x\left(2 x^{2}-7\right) .
$$

We see that $f^{\prime}(x)=0$ when $x=0$ and $x= \pm \sqrt{7 / 2}$.
$f^{\prime \prime}(x)=12 x^{2}-14$ and $f^{\prime \prime}(0)=-14<0, f(\pm \sqrt{7 / 2})=28>0$.
Hence by the second derivative test, 0 is a local max, while $\pm \sqrt{7 / 2}$ are local mins. (Alternatively, calculating $f(0)$ and $f(\pm \sqrt{7 / 2})$ one sees that the smallest value of $f(x)$ occurs when $x= \pm \sqrt{7 / 2}$.) Thus the two acceptable answers are $(\sqrt{7 / 2}, 5 / 2)$ and $(-\sqrt{7 / 2}, 5 / 2)$.

