MATH 142

Midterm 2 ANSWERS

January 10, 2003

1. (30 pts) Solve the following integrals.
(a) (10 pts)

$$
\begin{aligned}
\int 3 \sin (2 x) d x & \\
& =-\frac{3}{2} \cos (2 x)+C
\end{aligned}
$$

(b) (10)

$$
\begin{gathered}
\int \frac{2}{\sqrt{x}} d x \\
=\int 2 x^{-1 / 2} d x+C=4 x^{1 / 2}+C=4 \sqrt{x}+C
\end{gathered}
$$

(c) (10)

$$
\begin{aligned}
& \int_{-4}^{-2} \frac{2+x}{5 x} d x \\
= & \frac{2}{5} \int_{-4}^{-2} \frac{1}{x} d x+\frac{1}{5} \int_{-4}^{-2} d x \\
= & \left.\frac{2}{5} \ln |x|\right|_{-4} ^{-2}+\left.\frac{1}{5} x\right|_{-4} ^{-2} \\
= & \frac{2}{5}(\ln 2-\ln 4)+\frac{1}{5}(-2-(-4)) \\
= & -\frac{2}{5} \ln 2+\frac{2}{5}
\end{aligned}
$$

2. (26 pts)

(a) (13 pts) Find

$$
\frac{d}{d x} \int_{0}^{\sqrt{x}}\left(1+t^{4}\right) d t
$$

Let

$$
F(y)=\int_{0}^{y}\left(1+t^{4}\right) d t
$$

Then $F^{\prime}(y)=1+y^{4}$ by the fundamental theorem of calculus. Thus, the answer to our problem is

$$
\frac{d}{d x} F(\sqrt{x}) .
$$

But by the chain rule,

$$
\begin{aligned}
\frac{d}{d x} F(\sqrt{x}) & =F^{\prime}(\sqrt{x})[\sqrt{x}]^{\prime} \\
& =F^{\prime}(\sqrt{x})\left[x^{1 / 2}\right]^{\prime} \\
& =\left(1+\sqrt{x}^{4}\right) \frac{1}{2} x^{-1 / 2} \\
& =\frac{1}{2}\left(1+x^{2}\right) x^{-1 / 2} \\
& =\frac{\left(1+x^{2}\right)}{2 x^{1 / 2}}
\end{aligned}
$$

(b) (13 pts) Find

$$
\frac{d}{d x} \int_{x^{2}}^{0} \sin ^{4}(t) d t
$$

Let $F(y)$ be an antiderivative of $\sin ^{4}(y)$, so that $F^{\prime}(y)=\sin ^{4}(y)$. Then,

$$
\int_{x^{2}}^{0} \sin ^{4}(t) d t=F(0)-F\left(x^{2}\right)
$$

and by the chain rule,

$$
\begin{aligned}
\frac{d}{d x} \int_{x^{2}}^{0} \sin ^{4}(t) d t & =\frac{d}{d x}\left(F(0)-F\left(x^{2}\right)\right) \\
& =-\frac{d}{d x} F\left(x^{2}\right) \\
& =-F^{\prime}\left(x^{2}\right) 2 x \\
& =-\sin ^{4}\left(x^{2}\right) 2 x
\end{aligned}
$$

3. (15 pts) Suppose that you keep track of the rainfall, in inches per hour, for Rochester. Time is measured in hours. It is now time 0 . At time t, it is raining at $\left(t^{2}+t\right) / 10,000$ inches per hour. Find the amount of rainfall over a 3 -day period, starting now.
Hint: How many hours are in 3 days?
3 days is 72 hours, so the total rainfall would be

$$
\int_{0}^{72} \frac{t^{2}+t}{10,000} d t=\left.\frac{1}{10,000}\left(\frac{t^{3}}{3}+\frac{t^{2}}{2}\right)\right|_{0} ^{72}=\frac{1}{10,000}\left(\frac{72^{3}}{3}+\frac{72^{2}}{2}\right)=12.7 \text { inches. }
$$

4. (39 pts) Solve the following integrals.
(a) (13 pts)

$$
\int \frac{\sin (\ln (x))}{x} d x
$$

Let

$$
\begin{aligned}
u & =\ln (x) \\
d u & =\frac{1}{x} d x
\end{aligned}
$$

Then,

$$
\int \frac{\sin (\ln (x))}{x} d x=\int \sin (u) d u=-\cos (u)+C=-\cos (\ln (x))+C
$$

(b) (13 pts)

$$
\int_{0}^{\pi / 4} \cos (2 x) e^{\sin (2 x)} d x
$$

Let

$$
\begin{aligned}
u & =\sin (2 x) \\
d u & =2 \cos (2 x) d x
\end{aligned}
$$

Then, since $\sin (0)=0$ and $\sin (2 \cdot \pi / 4)=\sin (\pi / 2)=1$,

$$
\int_{0}^{\pi / 4} \cos (2 x) e^{\sin (2 x)} d x=\frac{1}{2} \int_{0}^{1} e^{u} d u=\left.\frac{1}{2} e^{u}\right|_{0} ^{1}=\frac{1}{2}\left(e^{1}-e^{0}\right)=\frac{e-1}{2}
$$

(c) (13 pts)

$$
\int_{0}^{1} \frac{e^{x}}{e^{x}+1} d x
$$

Let

$$
\begin{aligned}
u & =e^{x}+1 \\
d u & =e^{x} d x
\end{aligned}
$$

Then, since $e^{0}+1=2$ and $e^{1}+1=e+1$,

$$
\int_{0}^{1} \frac{e^{x}}{e^{x}+1} d x=\int_{2}^{e+1} \frac{1}{u} d u=\left.\ln |u|\right|_{2} ^{e+1}=\ln (e+1)-\ln (2)=\ln \left(\frac{e+1}{2}\right)
$$

5. (15 pts) Find the area between the curves

$$
\begin{aligned}
& y=3 x+3 \\
& y=3-x^{2}
\end{aligned}
$$

between $x=0$ and $x=1$.
Since $y=3-x^{2}$ is below $y=3 x+3$ on the interval $(0,1)$, the area is

$$
\begin{aligned}
A & =\int_{0}^{1}\left(3 x+3-3+x^{2}\right) d x \\
& =\int_{0}^{1}\left(3 x+x^{2}\right) d x \\
& =\left.\left(\frac{3 x^{2}}{2}+\frac{x^{3}}{3}\right)\right|_{0} ^{1} \\
& =\frac{3}{2}+\frac{1}{3} \\
& =\frac{11}{6}
\end{aligned}
$$

6. (15 pts) Find the area between the curves

$$
\begin{aligned}
& y=x^{2}-1 \\
& y=x+1
\end{aligned}
$$

Hint: Find the points at which the curves intersect.
Setting the right hand sides of the equations equal, we get

$$
x^{2}-1=x+1
$$

or

$$
0=x^{2}-x-2=(x-2)(x+1)
$$

So, the curves intersect at $x=-1,2$. Checking at $x=0$, we see that the curve $y=x+1$ is on top, so the area would be

$$
\begin{aligned}
A & =\int_{-1}^{2}\left(-x^{2}+x+2\right) d x \\
& =\left.\left(-\frac{x^{3}}{3}+\frac{x^{2}}{2}+2 x\right)\right|_{-1} ^{2} \\
& =\left(-\frac{8}{3}+\frac{4}{2}+4\right)-\left(-\frac{-1}{3}+\frac{1}{2}-2\right) \\
& =-\frac{9}{3}+2+4-\frac{1}{2}+2 \\
& =5-\frac{1}{2} \\
& =\frac{9}{2}
\end{aligned}
$$

7. (15 pts) Find the volume of the solid obtained by rotating the region bounded by the given curves, about the x-axis.

$$
\begin{aligned}
& y=x^{2} \\
& y=2 x
\end{aligned}
$$

We find the intersection points by setting the right hand sides of the equations equal, to get $x^{2}=2 x$. The points are $x=0,2$. We use vertical slices, and the slices are washers. The area of the cross-section is

$$
A(x)=\pi(2 x)^{2}-\pi\left(x^{2}\right)^{2} .
$$

Thus, the volume is

$$
\begin{aligned}
V & =\int_{0}^{2}\left(\pi(2 x)^{2}-\pi\left(x^{2}\right)^{2}\right) d x \\
& =\pi \int_{0}^{2}\left(4 x^{2}-x^{4}\right) d x \\
& =\left.\pi\left(\frac{4}{3} x^{3}-\frac{1}{5} x^{5}\right)\right|_{0} ^{2} \\
& =\pi\left(\frac{4}{3} \cdot 8-\frac{32}{5}\right) \\
& =\pi\left(\frac{32}{3}-\frac{32}{5}\right) \\
& =32 \pi\left(\frac{1}{3}-\frac{1}{5}\right) \\
& =32 \pi \frac{2}{5} \\
& =\frac{64}{15} \pi
\end{aligned}
$$

8. (15 pts) Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the y-axis.
WARNING Unless you use the shell method, you will not get full credit.

$$
\begin{aligned}
& y=e^{x^{2}} \\
& y=0 \\
& x=0 \\
& x=4
\end{aligned}
$$

The volume of a cylindrical shell is $2 \pi h r \Delta r$, where h is the height and r is the radius. In this case, $r=x$ and $h=e^{x^{2}}$.

$$
V=\int_{0}^{4} 2 \pi x e^{x^{2}} d x
$$

Use the substitution $u=x^{2}, d u=2 x d x$. The limits of $x=0, x=4$ become $u=0, u=16$.

$$
\begin{aligned}
V & =\pi \int_{0}^{16} e^{u} d u \\
& =\left.\pi e^{u}\right|_{0} ^{16} \\
& =\pi\left(e^{16}-1\right) .
\end{aligned}
$$

9. (15 pts) A spring at rest has length of 1 meter. Assuming that the spring constant k equals 10 Newtons per meter squared. Calculate the work required to stretch the spring so as to increase its length to 3 meters.

Hooke's law says that the force you need to use on the spring is

$$
F=k x=10 x .
$$

where x is the distance beyond equilibrium. Since we are starting from an equilibrium position of 1 , we must integrate from $x=0$ to $x=2$. The work is

$$
\begin{aligned}
W & =\int_{0}^{2} 10 x d x \\
& =10 \int_{0}^{2} x d x \\
& =\left.10 \cdot \frac{x^{2}}{2}\right|_{0} ^{2} \\
& =20 \text { Joules. }
\end{aligned}
$$

10. (15 pts) Find the average value of $f(x)=x \sqrt{1+x^{2}}$ over $[0,4]$.

The average value would be

$$
\frac{1}{4-0} \int_{0}^{4} x \sqrt{1+x^{2}} d x
$$

Use the substitution $u=1+x^{2}, d u=2 x d x$. The limits of integration, which were $x=0$ and $x=4$ now become $u=1$ and $u=17$. Then, the average value of f is

$$
\begin{aligned}
\frac{1}{4} \int_{1}^{17} \sqrt{u} \frac{d u}{2} & =\frac{1}{8} \int_{1}^{17} u^{1 / 2} d u \\
& =\left.\frac{1}{8} \cdot \frac{2}{3} u^{3 / 2}\right|_{1} ^{17} \\
& =\frac{1}{12}\left(17^{3 / 2}-1\right)
\end{aligned}
$$

